
From WS-CDL Choreography to BPEL Process
Orchestration

Jan Mendling1 and Michael Hafner2

1 Institute of Information Systems and New Media,
Vienna University of Economics and Business Administration - WU Wien, Austria

jan.mendling@wu-wien.ac.at
2 Quality Engineering Research Group, Institut für Informatik,

Universität Innsbruck, Austria
m.hafner@uibk.ac.at

Abstract The Web Service Choreography Description Language (WS-
CDL) is a specification for describing multi party collaboration based on
Web Services from a global point of view. WS-CDL is designed to be
used in conjunction with the Web Services Business Process Execution
Language (WS-BPEL or BPEL). As WS-CDL is a new choreography
language, there has been doubt on the feasibility of a transformation to
BPEL. In this article, we show how BPEL process definitions of par-
ties involved in a choreography can be derived from the global WS-CDL
model and what the limitations of such a derivation are. We have imple-
mented a prototype of the mappings as a proof of concept. The automatic
transformation leverages the quality of software components interacting
in the choreography as advocated in the Model Driven Architecture con-
cept. The mapping reveals that some information has to be added manu-
ally to the generated BPEL, in particular, choice conditions and private
activities.
keywords: Choreography, Orchestration, Web Service, Business Pro-
cess, Workflow, Inter-organizational Processes

1 Introduction

The exchange of structured information between business partners is a crucial
means to facilitate coordinated production of goods and services. The increas-
ing use of Web Services for the implementation of inter-organizational scenarios
underlines the need for a choreography description language. Choreography lan-
guages are utilized to define the rules of a collaboration between parties without
revealing internal operations. They allow to specify when which information is
sent to which party and which options are available to continue the interaction.

Several specifications have been proposed for defining choreographies. The
Web Service Choreography Description Language (WS-CDL) [1] as the latest
proposal is based on a meta model and an XML syntax. It is expected to be
used in conjunction with the Web Service Business Process Execution Language
(WS-BPEL or BPEL) [2]. There are two application scenarios in this context:

first, business entities may agree on a specific choreography defined in WS-CDL
in order to achieve a common goal. This WS-CDL choreography is then used to
generate BPEL process stubs for each party. In this case, the WS-CDL choreog-
raphy may be regarded as a global contract to which all parties commit. Second,
a business may want to publish its processes’ interface to business partners.
In this scenario, a choreography description of the internal process has to be
generated.

WS-CDL has been criticized for the insufficient separation of meta-model and
syntax, the limited support for certain use case categories and its lack of formal
grounding [3]. This was taken as a motivation to identify service interaction
patterns [4] that might build the foundation of a new choreography language.
Besides, it is not clear whether all WS-CDL concepts can be mapped to BPEL [3].
Our paper discusses mappings between WS-CDL and BPEL. The contribution
is twofold. First, the mappings can be used to generate BPEL stubs from WS-
CDL choreographies and WS-CDL descriptions from BPEL processes, which
leverages the re-use of design artifacts as advocated e.g. in the Model Driven
Architecture (MDA) approach. Second, the definition of mappings yields insight
into potential incompatibilities of both languages. We implemented the mapping
in XSLT transformation programs as a proof of concept.

The rest of the article proceeds as follows. Section 2 introduces the concepts
of choreography and orchestration, and gives an overview of related work. In
Section 3 we give an example of an inter-organizational workflow based on a real
use case. Based on this workflow, we then present the main concepts of WS-
CDL and BPEL in Sections 4 and 5. Section 6 defines the mappings between
WS-CDL and BPEL, and it discusses how BPEL can be generated from WS-
CDL. Finally, Section 7 closes the paper with a conclusion and gives an outlook
on future research.

2 Choreography and Orchestration of Web Services

Web Services define interfaces for software components that can be accessed via
standard Internet protocols. The Web Service Description Language (WSDL)
is used to define, among others, operations and message types of a Web Ser-
vice. The Simple Object Access Protocol (SOAP) provides the mechanism for
concrete message interaction with a Web Service. Web Services are stateless
in nature, thus supporting only simple message exchange patterns like request-
response. This means that Web Services are well suited for messaging in inter-
organizational business processes, but they do not directly offer state control.

A key characteristic of inter-organizational business processes is the fact that
they involve multiple parties [5]. These parties perform different parts of the
overall process, whereas no one has control over the global state. This is similar
to multi-application system business processes [6] whose parts are executed by
different autonomous systems within one organization. In an inter-organizational
setting, the different parties usually have to balance a need for coordination in
order to realize the maximum efficiency with a need for privacy of their value-

creating procedures. In order to deal with this requirement, a distinction is
made between three interrelated views on the inter-organizational process: global
choreography, local choreography, and orchestration [5].

Choreography refers to the message sequences between different parties in an
inter-organizational business process [7]. In [8, p.199] the term conversation is
used similarly emphasizing Web Service message exchange. A choreography can
be described from a global and a local perspective. The global model of a chore-
ography specifies the message exchanges from an overall point of view. Alonso
et al. speak of coordination protocols [8] in this context. The local choreography
model defines the message interactions from the perspective of one party. A local
model is also referred to as interface process, public process, or abstract process
[6]. These two perspectives imply that there are multiple local models (for each
party one) that correspond to one global choreography. Several dedicated lan-
guages have been proposed for choreography including WSCL [9], WSCI [10] or
BPSS [11]. Recently, the World Wide Web Consortium has recommended WS-
CDL [1] as a new standard for the specification of global choreographies based
on Web Services.

Orchestration refers to an executable part of an inter-organizational process
that is provided by one party. This executable process (or integration process
[6]) interacts both with external Web Services of the other partners and with in-
ternal services. Although it contributes to the successful execution of the global
choreography, the state of the orchestration process is controlled locally. Several
orchestration languages support the definition of executable processes based on
Web Services like XLANG [12], WSFL [13], BPML [14], and BPEL. Also XPDL
[15] supports Web Service interaction, therefore, it can be utilized for orches-
tration, too. Recently, BPEL is getting the most attention from the industry.
Therefore, it is likely to become the de facto standard for Web Service orches-
tration.

Currently, there are several research groups working on general issues related
to inter-organizational workflow management systems (e.g. [16,17]). A number
of contributions discuss standards for specifying service choreographies (e.g.,
[3]) and propose formal foundations (e.g., [4,16,18]). A common engineering ap-
proach in this context is to achieve an agreement between multiple parties on the
global choreography (see e.g. [5]). This global model can be used to derive the
local choreography models for each party. Each of them can then implement its
own orchestration process that complies with the overall choreography. In this
article, we do not aim to contribute a novel approach to this field or to develop
a new standard. Instead, focusing on Web Services technology, we use existing
technology and standards to realize our vision of Model Driven Architecture in
the context of inter-organizational workflows. Our work can be regarded as an
instantiation (see [19]) of the engineering approach mentioned above by con-
sidering real-world choreography and orchestration standards. In this sense, we
evaluate the feasibility of deriving BPEL orchestration processes from WS-CDL
choreographies as described e.g. in [5]. We reported on the mapping from WS-
CDL to BPEL [20]. A recent extension of this work utilizes a knowledge base to

look up private parts of an orchestration that are not explicitly modelled in the
choreography [21,22].

Some work has been reported in model-driven development of Web Service
processes. [23] describes an implementation, where a local workflow is modeled
in a case-tool, exported via XMI-files to a development environment, and au-
tomatically translated into executable code for a BPEL engine based on Web
Services. In contrast to this approach, we move up one layer of abstraction and
start modeling at the choreography level. This is comparable to the approach
promoted in [24] where the authors start with a UML extension to generate
BPEL. In [25] we propose an approach for integrating security into the develop-
ment cycle, starting at the choreography level and show how the requirements
map through different levels of abstraction. In [26] we link abstract domain-level
models to their technical implementation and show how requirements are real-
ized through security components in a target architecture based on Web Services
standards. In the following, we present the Sectino case in order to motivate
the transformation from WS-CDL to BPEL.

3 Example of an Interorganizational Process

This section presents a case study from e-government (Section 3.1). The example
is first illustrated using a UML 2.0 Activity Diagram (Section 3.2) and integrates
a couple of basic and advanced interaction patterns (Section 3.3).

3.1 The Sectino Case Study

We use an example to illustrate various aspects of the relationship between an
externally observable choreography and related internal orchestrations of the col-
laborating partners’ nodes. The example captures an inter-organizational process
in e-government. It is drawn from a case that was elaborated within the project
Sectino [27]. The project’s vision was defined as the development of a frame-
work supporting the systematic realization of e-government related workflows.

The workflow-scenario ”Municipal Tax Collection” describes a collaboration
interaction between three participants: a tax-payer (the Client), a business agent
(the Tax Advisor) and a public service provider (the Municipality). In Austria,
wages paid to employees of an enterprise are subject to the municipal tax. Ac-
cording to the traditional process, corporations have to send an annual statement
via their tax advisor to the municipality. The latter is responsible for collect-
ing the tax. It checks the declaration of the annual statement, calculates the
tax duties and returns a tax assessment notice to the tax advisor. In our case
the stakeholders in this public administration process agreed to implement a
new online service, which offers citizens and companies to submit their annual
tax statements via internet. Due to various legal considerations, the process
had to be realized in a peer-to-peer fashion. The workflow specification should
ultimately integrate security requirements like integrity, confidentiality and non-
repudiation, but this is not shown here. For a deeper insight into Model Driven

Security in the context of inter-organizational workflows, please refer to a series
of accompanying publications [25,26,27,28].

3.2 UML 2.0 Activity Diagrams

In the present contribution, we take WS-CDL and BPEL as special cases for
global and local workflow languages respectively. The languages are based on
XML and by design heavily skewed towards the underlying implementation tech-
nology, which in both cases is the Web Services technology stack. We use UML
2.0 Activity Diagrams to illustrate the example process as it provides a means
to gain some insights in limitations inherent to UML and WS-CDL.

Figure 1 shows the choreography model as a UML Activity Diagram. It de-
scribes the collaboration of the three services in terms of the interactions in which
the parties engage. Model information is confined to directly observable behav-
ior, corresponding to the message flow between the participants, the interaction
logic and the control flow between the elementary actions. Roughly sketched,
the choreography logic as specified in Figure 1 works as follows: a company
representing a role Client submits a document of type AnnualStatement to a
company holding the role TaxAdvisor. The latter checks the document’s formal
compliance according to some criteria or guidelines (e.g., by triggering a manual
workflow task) and either rejects the document and notifies the Client or for-
wards it as document of type ProcessedAnnualStatement to a public service
provider holding the role Municipality. The latter stipulates the amount of
tax duties and returns the document TaxAssessment to the TaxAdivisor, who
in turn forwards a ProcessedtaxAssessment to his Client. The stakeholders
specified that a Municipality has to return the response within a 24 hours de-
lay. We envisage an additional scenario, where the response (TaxAssessment)
is returned directly to the Client instead of sending it to the TaxAdvisor (not
depicted here).

3.3 Interaction Patterns

Patterns provide the means to capture problem-solving insights and generalize
the knowledge inherent in proven and reliable solutions in order to facilitate their
re-use. Interaction Patterns, as described in [4], have been especially defined in
order to formalize the requirements for choreography languages independent of
specific languages or technologies. Our example captures the following basic and
advanced interaction patterns:

Basic Interaction Patterns correspond to bilateral interactions where a party
sends a message to a receiving party (atomic send), and the message optionally
triggers a related response (send/receive or receive/send as its dual).

– Send or Receive: in our example in Figure 1 all parties implement a set of
Send and Receive patterns.

Client TaxAdvisor Municiplality

SendAnnualStatement
Receive

AnnualStatement

ReceiveProcessed
TaxAssessment

ReceiveRejection

SendProcessed
AnnualStatement

ReceiveProcessed
AnnualStatement

Send
TaxAssessment

Receive
TaxAssessment

SendProcessed
TaxAssessment

SendRejection

CheckAnnual
Statement

[DataOK]

ReceiveConfirmation
OfAcceptance

SendConfirmation
OfAcceptance

[IncompleteData]

Annual
Statement

Rejection

Acceptance

ProcessedAnnual
Statement

Tax
Assessment

ProcessedTax
Assessment

{Response has to occur whithin 24h}

Figure 1. Choreography Model for Municipal Tax Collection

– Send/Receive and Receive/Send patterns relate the two atomic patterns
causally. This corresponds to bilateral interaction, showing a document flow-
ing across swim-lanes. As the messages in the choreography all belong to the
same instance of the global workflow, a send (receive) pattern that is followed
by a receive (send) pattern within the same control flow can implicitly be
considered as an instantiation of a send/receive (receive/send) pattern. The
case, where a response is sent by a third party corresponds to the pattern
Request with Referral Party, which is presented in the following.

Advanced Interaction Patterns are composed of basic patterns and specify ad-
vanced interaction semantics. Our case study was driven by requirements of a
real-life case-study: as a consequence, we had to adapt the scenario to incorpo-
rate the following advanced interaction patterns (for a comprehensive survey of
patterns, please refer to [4]:

– Contingent Request: the Municipality is bound to return the TaxAssessment
within 24 hours, otherwise an exception is thrown. In UML, this is specified
through an informal constraint associated to an object node.

– Request with Referral to a Single Party: in an alternative Scenario not shown
in Figure 1, the document TaxAssessment should be sent directly to the
Client, with a Notification to the TaxAdvisor.

4 An Overview of WS-CDL

In this section, we show how parts of the workflow specifications can be specified
with WS-CDL. We first describe the building blocks of a WS-CDL specification
corresponding to the choreography in Figure 1 (Section 4.1), we then move on to
integrate control-flow activities (Section 4.2) and finally analyze the possibilities
to integrate the complex interaction patterns specified in Section 3 (Section 4.3).

4.1 WS-CDL Basic Syntax and Semantics

WS-CDL [1] is a declarative XML-language for the specification of collaboration
protocols based on Web Services. It provides a global public view on participants
collaborating in a peer-to-peer fashion by offering distributed Web Services in
order to achieve a common business goal. The protocol describes their observ-
able behaviour through the order of the messages they exchange as well as the
operations they offer. Taking our example ”Municipal Tax Collection”, Figure
2 shows two parts of a WS-CDL document: the package information and the
choreography definition. We only sketch the main concepts, for details, please
refer to [1].

Package information: The package element is the root of every choreogra-
phy definition and contains informationType definitions for messages and vari-
ables (e.g., the document AnnualStatement sent from Client to TaxAdvisor
(lines 5-7)) as well as process instance correlation data (lines 2-4). These data
types are used within the choreography definition part. A roleType repre-
sents an actor of the collaboration (e.g., ServiceProviderRole (lines 8-11)).
This element associates operation names and their WSDL interfaces via the
behavior element. For example, the ServiceProviderRole is expected to im-
plement a ReceiveAnnualStatement operation, which is specified in the corre-
sponding WSDL file. The relationshipType element pairs two roles and op-
tionally a subset of the behaviour they exhibit: e.g., the relationshipType
ClientTaxAdvisor associates a ClientRole to a ServiceProviderRole which
is one of two roles a TaxAdvisor is expected to implement (lines 16-19). A
participantType represents a logical grouping of roles. For example, the
participantType TaxAdvisor implements two roles: on the one hand the
ServiceProviderRole and on the other hand ServiceRequesterRole (lines
20-23). A channelType indicates the role the receiver of a message is playing
and - optionally - which behaviour he is expected to implement: the channelType
SubmitAnnualStatementChannel specifies a return channel for responses to a
document submission (lines 24-26.). Finally, every package contains one or more
choreography definitions (line 37).

Choreography Definition: the core of a collaboration is defined by the ele-
ment choreography, which specifies a set of peer-to-peer interactions. A pack-
age can contain one or more choreographies, one being the root choreography
(lines 1-2). A choreography first specifies relationships. The example shows two
relationships: one between a TaxAdvisor and his Client, and one between the
TaxAdvisor and a Municipality (lines 3-4).

<package name="AnnualStatementService" ...>
 <informationType

name="correlationId"
 type="string"/>

 <informationType
name="annualStatement"
type="annualStatement.xsd"/>

 …
 <roleType name="ServiceProviderRole">
 <behavior name="ReceiveAnnualStatement"

interface="TaxAdvisor.wsdl"/>
 </roleType>
 <roleType name="ServiceRequesterRole">
 <behavior name="ReceiveTaxAssessment"

interface="TaxAdvisor.wsdl"/>
 </roleType>
…
 <relationshipType name="ClientTaxAdvisor">
 <role type="ClientRole" />
 <role type="ServiceProviderRole"/>
 </relationshipType>
…
 <participantType name="TaxAdvisor">
 <role type="ServiceProviderRole"/>
 <role type="ServiceRequesterRole"/>
 </participantType>
...
 <channelType

name="SubmitAnnualStatementChannel"
action="request">

 <passing
action= "respond"
channel= "ReturnProcessedTaxAssessmentChannel"/>

 <reference>
 <token name="taxAdvisorRef"/>
 </reference>
 <identity>
 <token name="processId"/>
 </identity>
 </channelType>
...
 <choreography> ...</choreography>
</package>

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

37
38

Package Information Choreography Definition

<choreography name="AnnualStatementSubmission"
root="true">

 <relationship type="tns:ClientTaxAdvisor"/>
 <relationship type="tns:TaxAdvisorMunicipality"/>
...
 <variableDefinitions>
 <variable name= "AS"

mutable= "true"
free= "false"
informationType= "annualStatement"
silent= "false"/>
roleTypes=“Client, TaxAdvisor^“

 ...
 </variableDefinitions>

 <sequence>
 <interaction name="AnnualStatementSubmission"

channelVariable="tns:SubmitAnnualStatementChannel"
operation="ReceiveAnnualStatement" initiate="true">

 <participate relationshipType="ClientTaxAdvisor"
fromRole="tns:ClientRole"
toRole="ServiceProviderRole"/>

 <exchange name = "AnnualStatementSubmissionExchange"
action= "request"
informationType= "annualStatement" >

 <send variable= "AS"/>
 <receive variable= "AS"/>
 </exchange>
 </interaction>
…
 </sequence>
...
</choreography>

1
2
3
4

5
6
7
8
9

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28

Figure 2. WS-CDL Listings (Basic Constructs)

In a second step, the variables are declared, e.g., the variable AS of type
AnnualStatement will only be used by the ClientRole and the
ServiceProviderRole. The interaction element is the building block of com-
munication. It participates in a relationshipType and specifies the direction
of the message flow: the message flows from the sender (specified as fromRole)
to the receiver (ToRole) if the action attribute of the exchange element is set to
request. The exchange element also captures the name of the operation associ-
ated to this interaction. Interaction elements can be nested within control-flow
activities (e.g., sequence, Fig. 2 line 13-27).

4.2 Work-Unit and Control-Flow Activities

A workunit activity describes the conditional execution of an activity. An en-
closed activity is executed whenever the guard condition evaluates to true and
can repeatedly be executed by setting a corresponding repetition condition.
A workunit is called blocked, whenever it is bound to wait for the variables
to be available before evaluation. In our example, we use workunit activites in
conjunction with other control-flow activites (e.g., choice).

Control-Flow activities can be of three types sequence, parallel and
choice. A sequence activity describes the execution of two or more activities in
sequential order (e.g., Fig. 3, lines 1 and 37). A parallel activity describes two
or more activities that can be executed in parallel, whereas a choice activity

 <sequence>
 <interaction name="AnnualStatementSubmission" …. >

 <participate relationshipType="ClientTaxAdvisor" …. />
 <exchange name = "AnnualStatementSubmissionExchange" …. >

….
 </exchange>
 </interaction>

 <choice>

 <workunit name=“CheckAnnualStatementRejection“
guard=“cdl:isVariableAvailable (cdl:getVariable(„isCompliant“,

„ServiceProviderRole“) = false))“
block=“true“>

 <interaction name="AnnualStatementRejection"
channelVariable="RejectAnnualStatementChannel"

operation="RejectAnnualStatement" initiate="false">
 <participate relationshipType="ClientTaxAdvisor" …. />

 …
 </interaction>

 </workunit>

 <workunit name=“CheckAnnualStatementAcceptance“
guard=“cdl:isVariableAvailable (cdl:getVariable(„isCompliant“,

„ServiceProviderRole“) = true))“
block=“true“>

 <parallel>
 <interaction name="SendConfirmanceOfAcceptance"

channelVariable="ConfirmanceOfAcceptance"

operation="SendConfirmanceOfAcceptance" initiate="false">
 <participate relationshipType="ClientTaxAdvisor" …. />

 …
 </interaction>

 <interaction name="SendProcessedAnnualStatement"
channelVariable="ProcessedAnnualStatemen"

operation="SendProcessedAnnualStatemen" initiate="false">
 <participate relationshipType="TaxAdvisorMunicipality" …. />

 …
 </interaction>

 …
 </parallel>

 </workunit>

 </choice>
 </sequence>

 ...
 </choreography>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

Figure 3. Data Driven Choice (WS-CDL)

defines the execution of a specific activity, depending on the evaluation of data
variables or the occurrence of a specific event.

The specification in Figure 1 requires the integration of a Data-driven Choice
Activity : the TaxAdvisor has to decide whether to reject the AnnualStatement
and return it to the Client (by calling the appropriate method on the Client’s
interface) or to forward it to the Municipality. The decision should be based on
the evaluation of data variables. The code in Figure 3 shows one of many ways
how this decision could be specified in WS-CDL. Each branch was captured in
a workunit of its own (lines 8-17 and 18-35). We make use of the WS-CDL
functions isVariableAvailable (e.g., line 9) and getVariable (e.g., line 9) to
get variable information for the guard condition. Based on the assumption that
the evaluation task in the TaxAdvisor’s application environment would return
the boolean variable isCompliant as a result of some compliance check, either
a notification of rejection (Rejection) is sent to the Client or the document
is forwarded to the Municipality and the Client simply gets a notification of
acceptance (Acceptance).

4.3 Advanced Interaction patterns

Contingent Request. For the specification of the requirement that the
Municipality has to answer within a 24 hours delay, we make use of the same
functions as in the previous section and additionally use the WS-CDL function
getCurrentTime(). The code in Figure 4 shows the the contingent request as a
choice between two workunits.

<choice>

 <workunit>
name=“ResponseInTime“
guard=“cdl:getVariable(„TimeStamp“, „/TaxAssessment/TimeStamp“,
 „MunicipalityRole“) < cdl:getVariable(„TimeStamp“, „/SendAnnualStatement/
 TimeStamp“, „TaxAdvisorRole“) + 24:00:00)“
block=“true“>

 <interaction name="SendProcessedTaxAssessment" … >
 <participate relationshipType="ClientTaxAdvisor" …. />
 fromRole="tns:TaxAdvisorRole"

toRole="ClientRole"/>
 ….
 </interaction>
 </workunit>

 <workunit>
name=“ResponseOutOfTime“
guard=“cdl:getCurrentTime > cdl:getVariable(„TimeStamp“, „SendAnnualStatement/
 TimeStamp“, „TaxAdvisorRole“) + 24:00:00)“
block=“true“>

 <interaction name = "DelayException" …>
 <participate relationshipType="ClientTaxAdvisor" …. />
 fromRole="tns:TaxAdvisorRole"

 toRole="ClientRole"/>
 ….
 </interaction>
</workunit>

</choice>

1

2
3
4
5
6
7
8
9

10
11

12
13

14
15
16
17
18
19
20
21
22

23
24

25

Figure 4. Contingent Request (WS-CDL)

In the first workunit, the guard condition compares the timestamps of the
message sent to the Municipality (ProcessedAnnualStatement) and the one
coming from the Municipality (TaxAssessment). In case the response occurred
within 24h, the workflow proceeds. Otherwise a notification is returned to the
Client as specified in the second workunit. In a third unit, the case when no
message at all is returned, could be handled.

Request with Referral to a Single Party. The alternative scenario, where the
Municipality returns the TaxAssessment directly to the Client can be simply
realized through the passing of a previously defined channel variable (Fig. 5).

5 BPEL Implementation of the Tax Advisor

In this section, we show which parts of the workflow specifications can be spec-
ified with BPEL. We first describe the building blocks of a BPEL specification
corresponding to the Choreography in Figure 1 (Section 5.1), we then move on
to integrate control-flow activities (Section 5.2) and finally analyse the possibili-
ties to integrate the complex interaction patterns specified in Section 2 (Section
5.3).

 …
<variableDefinitions>
 <variable name= "TACC"

mutable= "false"
free= "true"
channelType= "TaxAssessmentClientChannel"
silent= "true"/>
roleTypes=“Client, TaxAdvisor^“

 ...
 </variableDefinitions>
...
<sequence>
 <interaction name="SendProcessedAnnualStatement"

channelVariable="TaxAssessmentClientChannel"
operation="ReceiveProcessedAnnualStatement" initiate="false">

 <participate relationshipType="TaxAdvisorMunicipalityClient"
toRole="tns:MuniciplalityRole"
fromRole="ServiceProviderRole"/>

 <exchange name = "AnnualStatementSubmissionExchange"
action= "request"
informationType= "processedAnnualStatement" >

 <send variable= "PAS"/>
 <receive variable= "PAS"/>
 </exchange>
 </interaction>
 <interaction name="SendTaxAssessment"

channelVariable="TaxAssessmentClientChannel"
operation="ReceiveTaxAssessment" initiate="false">
…

 </sequence>

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
21
23
24
25

26

Figure 5. Request with Referral to a Single Party (WS-CDL)

5.1 Standard Workflows with BPEL

BPEL is an XML-based language for the composition of executable business
processes based on Web Services. The specification of BPEL can be found in
[2]. Listing 6 shows a BPEL process for one of the choreography participants.
In order to implement his part of the choreography, the role TaxAdvisor or-
chestrates the sequence of service interactions through a BPEL process called
TaxAdvisorProcess. The service composition is offered through an interface
according to the choreography specification. A partnerLink defines internal
and external parties (myRole and partnerRole) that interact with the pro-
cess instance and the portTypes that need to be implemented (see lines 2-6).
A partnerLinkType is a BPEL extension, which is used in the WSDL defini-
tion. It defines two roles of a bilateral message exchange and their portTypes.
A partner element (lines 7-9) can be used to group partnerLinks. Variables
(lines 12-14) describe the message types used in a BPEL process. A variable is
identified by a unique name and is associated to a messagetype. Variables store
received messages and hold messages to be sent to other parties. A BPEL process
describes the execution order of Web Services operations via basic and structured
activities. A basic activity is either a message exchange between Web Services or
a local operation of a BPEL engine. The example illustrates a receive activity
(lines 17-25). The activity blocks the process until a matching message arrives.
Invocations of remote Web Service operations are modelled as invoke activ-
ities. Lines 26-32 illustrate an asynchronous one-way invocation. Synchronous

request/response interaction can be expressed by including an additional output
variable to store the response. Control flow logic of a BPEL process is defined via
structured activities. In our example we use sequence for sequential execution.
A correlationSet describes parts of messages which are unique for a process
instance. Aliases to these message parts are called properties.

<process name="TaxAdvisorProcess" …>
<partnerLinks >
 <partnerLink name="AnnualStatementSubmission "

myRole="ServiceProviderRole " partnerRole ="ClientRole"/>
partnerLinkType =“AnnualStatementSubmission “

...
 </partnerLinks >
 <partners >
 <partner name ="ClientRole">

</partner >
 <partner name ="ServiceProviderRole ">
…
 </partners >
 <variables >
 <variable name="AS" messageType="annualStatement "/>
….
 </variables>

1
2
3
4
5

6
7
8
9

10

11
12
13

14

BPEL Process Definition

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

 <sequence name ="1st level">
 <receive name="ReceiveAnnualStatement "

partnerLink ="AnnualStatementSubmission "
portType="ReceiveAnnualStatementPT "
operation="ReceiveAnnualStatement "

 variable="AS" createInstance="yes">
 <correlations >
 <correlation set="tax:processId" initiate="yes"/>
 </correlations >
 </receive>
 <invoke name="CheckAnnualStatementLocal "
 partnerLink="Local" operation ="CheckAnnualStatement "
 inputVariable="CheckASLocalVar">
 <correlations >
 <correlation set="tax:processId" initiate="yes"/>
 </correlations >
 </invoke>
...
 </sequence>
</process>

Figure 6. BPEL Listing (Basic Constructs)

5.2 Structured Activities

In BPEL, the order of execution of activities is specified through Structured Ac-
tivities. Ordinary sequential control is provided by sequence, switch and while,
concurrency by flow and nondeterministic choice based on external events by
pick. Figure 7 shows, how the ”compliance check issue” is resolved for the
TaxAdvisor with straightforward use of switch and case statements, assuming
that the variable isCompliant is returned as a result of the check and made
available to the system in some way.

On the other hand, the Client does not know about the decision making of
the TaxAdvisor. Therefore, the Client has to implement a pick with alternative
onMessage constructs for either a rejection or an acceptance message, and we
discuss conceptual challenges.

1
2
3
4
5
6
7
8
9

10
11
12

<switch>
 <case condition= "bpws:getVariableProperty(isCompliant) = „true“">
 <flow>

<!-- proceed with workflow -->
 </flow>
 </case>
 <case condition="bpws:getVariableProperty(isCompliant) = „false">
 <flow>

<!-- terminate with Rejection -->
 </flow>
 </case>
</switch>

Figure 7. Document Compliance (BPEL)

5.3 Advanced Interaction patterns

Contingent Request. Figure 8 shows the implementation of the 24h response
requirement. This occurs through a pick activity which awaits an event, in our
case either the document TaxAssessment - through onMessage - or an alarm
based on a timer (onAlarm).

1
2
3
4
5
6
7
8

9
10
11
12

<pick>
 <onMessage partnerLink="Municipality"

portType="receiveTaxAssessmentPT"
operation="receiveTaxAssessment"
variable="lineItem">
<!-- activity to forward ProcessTaxAssessment to Client -->

 </onMessage>
 <!-- set an alarm to timeout after 24 hours -->

<onAlarm for="'P0DT24H'">
<!-- activity to notify Client about timeout-->
</onAlarm>
</pick>

Figure 8. Contingent Request (BPEL)

Request with Referral to a Single Party. The alternative scenario, where the
Municipality returns the TaxAssessment directly is of no importance to the
TaxAdvisor. He simply waits for some notification message by the Municipality.

6 Generating BPEL Stubs from WS-CDL

While the previous sections illustrated how BPEL processes can be modelled in
correspondence to a given WS-CDL choreography, this section presents trans-
formation rules from WS-CDL to BPEL. We implemented a transformation pro-
gram that also includes mapping rules that are not presented here due to space
limitations as a proof-of-concept.3 We use the namespace prefixes cdl: and bpel:
to indicate to which specifications the concepts belong.4

6.1 Core Concepts

Generally, one WS-CDL document maps to one or more partnerLinkTypes
(each representing a bilateral communication relationship), multiple property
and propertyAlias definitions related to WSDL interfaces, and at least two
BPEL processes for each party involved in the choreography (see Figure 9).

3 The wscdl2bpel.xslt program is available from http://wi.wu-wien.ac.at/˜mendling.
It uses the XALAN extensions to generate multiple output files. For details see
http://xml.apache.org/xalan-j.

4 Being aware that their are separate schemas for BPEL processes, partnerLinkTypes,
and properties, we use the same bpel: prefix for all the three for better readability.

PartnerLinkTypes: Web Service interactions in a BPEL process rely on the
availability of so-called bpel:partnerLinkTypes. A bpel:partnerLinkType de-
fines the interaction of two parties by giving two related bpel:role elements and
the bpel:portType that implements the role. This concept is very similar to the
notion of a cdl:relationshipType. Accordingly, one cdl:relationshipType
maps to one bpel:partnerLinkType and the bpel:role with its bpel:portType
is generated from the referenced cdl:roleType declaration.

WS-CDL
<package>
<informationType>
<token>
<roleType>
<relationshipType>
<choreography>

PartnerLinkType
<plnk:partnerLinkType>
<plnk:role name="1">
<plnk:portType
 name="tns:pt"/>
</plnk:role>
</plnk:partnerLinkType>

PartnerLinkType
<plnk:partnerLinkType>
<plnk:role name="1">
<plnk:portType
 name="tns:pt"/>
</plnk:role>
</plnk:partnerLinkType>

PartnerLinkType
<plnk:partnerLinkType>
<plnk:role name="1">
<plnk:portType
 name="tns:pt"/>
</plnk:role>
</plnk:partnerLinkType>

Properties
<property name="item"
type="xsd:string"/>
<propertyAlias
propertyName="item"
messageType="message"
part="firstpart"
query="/itemid"/>

Properties
<property name="item"
type="xsd:string"/>
<propertyAlias
propertyName="item"
messageType="message"
part="firstpart"
query="/itemid"/>

Properties
<property name="item"
type="xsd:string"/>
<propertyAlias
propertyName="item"
messageType="message"
part="firstpart"
query="/itemid"/>

WS-BPEL
<process>
<partnerLinks>
<partners>
<variables>
<sequence>

WS-BPEL
<process>
<partnerLinks>
<partners>
<variables>
<sequence>

WS-BPEL
<process>
<partnerLinks>
<partners>
<variables>
<sequence>

1

1

1

1..n

0..n

2..n

Figure 9. WS-CDL Document Mapping to one or more BPEL Documents

Properties: In BPEL properties play an important role for the correlation of
messages and process instances. The bpel:property element defines an element
that is unique for the process instance and which can be used for correlation. The
related bpel:propertyAlias element specifies the XPath query to retrieve the
bpel:property from a message. In WS-CDL cdl:token and cdl:tokenLocator
elements represent the same concept. As only some property declarations are rel-
evant for a specific party involved in the choreography, there needs to be a filter
mechanism. We generate separate property files for each cdl:roleType includ-
ing only those bpel:properties that are relevant for a party. The WS-CDL
does not impose tokens to be defined, because e.g. a simple stateless request-
response choreography does not need correlation. Accordingly, it is possible that
no property files are generated from the WS-CDL choreography.

BPEL Process: For each party, a separate BPEL stub is generated. A party is
either a cdl:participant that bundles several cdl:roleTypes or a cdl:roleType
that is not subordinated to a cdl:participant. For both, the relevant infor-
mation to be included in the BPEL files is identified via the cdl:roleType
or the cdl:roleType elements referenced in the cdl:participant element.

A party’s BPEL process includes declaration blocks with partner links, vari-
ables, and correlation sets – information needed by the activities defining the
process. The bpel:partnerLinks block references the bpel:partnerLinkType
files. It indicates the party’s role in the process via the bpel:myRole attribute.
The bpel:variables are generated from the cdl:variableDefinitions and
from their references to cdl:informationType elements. Variables relevant to
a party can be identified via the cdl:roleTypes attribute of each variable.
bpel:correlationSets can be derived from the cdl:channelType elements:
each channel element yields a bpel:correlationSet named after the channel
and including the cdl:token element of the channel’s cdl:identity element.
The derived correlation sets are only included in those BPEL processes of parties
using the respective channel in their interactions. The upper part of Figure 10
summarizes the mapping of the core concepts.

Semantics Additional Effort

relationshipType partnerLinkType Definition of bilateral interaction

role (ref. By roleType)

portType (ref. By roleType)

token property Message and process instance correlation

tokenlocator propertyAlias Message and process instance correlation

participant roleType For every participants a BPEL stub is generated

roleType roleType Role in interaction

variableDefinitions variable Message variable

channeltype correlationSet Message correlation pattern

workunit scope Execution context

repeat condition in a while loop Repested execution

guard condition Condition to be evaluated

block = false switch Nesting execution units

block = true (receive) Wait until condition becomes true or event happens some WS-CDL conditions not in BPEL

sequence sequence Sequential execution of activity units

parallel flow Simulaneous execution of parallel branches

choice case (nested in) switch Alternative execution units for sender condition must be added in BPEL

onMessage (nested in) pick Alternative execution units for receiver condition must be added in BPEL

interaction Bilateral exchange

action=request invoke Invocation by sending party

action=request receive Reception by receiving party

action=response invoke Reply by receiving party

action=response receive Reception by sending party

timeout pick, onAlarm (or) onMessage Concurrent time or message event
perform no mapping Bundle interactions to a choreography

assign assign (for party in roleTyoe) Variable assignment

silentAction sequence (with nested) empty Do nothing activities must be added in BPEL

noAction empty (for party in roleType) Do nothing

finalize compenstionHandler Finalizing activities after completion

WS-CDL BPEL

Figure 10. Mapping of Core Concepts and Control Flow

6.2 Control Flow

BPEL control flow is defined via scopes, structured and basic activities, the first
allowing to nest other activities. WS-CDL uses a similar concept: so-called work
units can be related to scopes, ordering structures to structured activities, and
WS-CDL basic activities to BPEL basis activities. In the following, we describe
the WS-CDL activities and show how they map to BPEL. The bottom part of
Figure 10 summarizes the mapping of the control flow elements and additional
engineering effort for building the BPEL process.

– cdl:workunit: The cdl:workunit is related to the bpel:scope concept in
the sense that it defines a context for consistent execution. Yet, its attributes
have a much more direct impact on control flow than the bpel:scope. The
cdl:workunit unifies the concepts of a loop (cdl:repeat), of a data event
(cdl:guard), and a wait (cdl:block). The guard and the block are interre-
lated. If cdl:block is true, then the choreography waits for the guard con-
dition to become true before progressing. If set to false, the cdl:workunit is
skipped. When the cdl:repeat condition is true the workunit is considered
again for execution depending on the guard. In BPEL the cdl:block=false
case maps to a bpel:switch executing the nested activities if the guard
condition is true, otherwise progressing with the next activity subsequent
to the cdl:workunit. The cdl:block=true case is hard to map as BPEL
does not know events like “variable becomes available”. We propose to use
a bpel:receive in this case, because it blocks until a message is received
and written to a bpel:variable. The BPEL engineer needs to add infor-
mation from where the message is to be received. Finally, a cdl:repeat
condition is mapped to a bpel:condition of a bpel:while loop. Note that
the bpel:while is executed until the bpel:condition becomes true, and
the cdl:repeat indicates repetition as long as the condition is still true.

– cdl:sequence: In general the cdl:sequence of the global model maps to a
bpel:sequence of the local model. Yet, if the respective party is involved
only in one or in none of the child activities of the cdl:sequence, then no
local sequences needs to be generated.

– cdl:parallel: The cdl:parallel maps to a bpel:flow element in the local
model. Similar to the sequence, if the respective party is involved in zero or
one of the parallel branches, then the bpel:flow element can be omitted.

– cdl:choice: For those parties that can observe the decision condition, the
cdl:choice is mapped to a bpel:case nested in a bpel:switch element. In
this case the bpel:switch can only be left out if the party is not involved in
any of the cdl:choice nested activities. If the party is involved in one nested
activity a bpel:case for this activity has to be generated and a bpel:case
including a bpel:empty activity. Note that the bpel:conditions of the
cases need to be specified manually by the engineer of the BPEL process.
For those parties, who receive different messages in response to a decision
taken within the scope of another party, the cdl:choice has to be mapped
to a bpel:pick (see Section 5.2).

– cdl:interaction: Each cdl:exchange of an interaction maps to a web
service activity in BPEL (see Figure 11). In this context four cases have to
be distinguished depending on the value of the cdl:action and whether the
current party is mentioned in the cdl:toRole or cdl:fromRole attribute.
In case of a request action a bpel:invoke is generated for the party of the
cdl:fromRole and a bpel:receive for the party of the cdl:toRole. In case
of a response action it is the other way around. If there is a cdl:timeout
specified, a bpel:pick with a concurrent time event to the message receipt
has to be specified in place of the bpel:receive.

– cdl:perform: This activity is not directly mapped to BPEL, but all nested
activities of the referenced choreography are transformed and included.

– cdl:assign: This activity maps to a bpel:assign activity for the party
mentioned in the cdl:roleType attribute.

– cdl:silentAction: This activity indicates that a party must perform some
action that is not revealed in the global model. We propose to map it to
a bpel:sequence with a nested bpel:empty activity and a name attribute
set to “silent action”. The engineer of the BPEL process will then have to
specify these silent activities before deployment.

– cdl:noAction: This activity maps to a bpel:empty activity for the party
mentioned in the cdl:roleType attribute.

– cdl:finalize: Finalizing activities can only be started after successful com-
pletion of a choreography. In this sense, they are related to the concept
of a bpel:compensationHandler. Yet, they also involve communication to
confirm the completion to other parties. Therefore, they cannot always be
mapped to a bpel:compensationHandler because the only purpose of the
latter is to undo successfully completed actions. Accordingly, we propose to
append finalizing activities to the BPEL process of the parties involved.

 ...
 <interaction name="AnnualStatementSubmission"

channelVariable="tns:SubmitAnnualStatementChannel"
operation="ReceiveAnnualStatement" initiate="true">

 <participate relationshipType="ClientTaxAdvisor"
fromRole="tns:ClientRole"
toRole="ServiceProviderRole"/>

 <exchange name = "AnnualStatementSubmissionExchange"
action= "request"
informationType= "annualStatement" >

 <send variable= "AS"/>
 <receive variable= "AS"/>
 </exchange>
 </interaction>
 ...

Choreography Definition

 ...
 <invoke partnerLink="tns:ClientTaxAdvisorPT"

portType="tns:taxAdvisorRef"
operation="ReceiveAnnualStatement"
variable="AS"/>

 ...

ClientRole BPEL Process

TaxAdvisor BPEL Process

 ...
 <receive partnerLink="tns:ClientTaxAdvisorPT"

portType="tns:taxAdvisorRef"
operation="ReceiveAnnualStatement"
variable="AS"
createInstance="yes"/>

 ...

Figure 11. Transformation of the cdl:interaction element

With this transformation algorithm, BPEL processes can be generated almost
automatically for all parties. Still, a BPEL engineer has to add implementation
specific information including conditions for cases of a bpel:switch or activities
that have been defined as silent activities in the choreography model.

7 Conclusions

The core contribution of this paper was to show how BPEL process definitions
for parties involved in a choreography can be derived from a global WS-CDL
model. We have implemented a prototype of the mappings as a proof of concept.
The automation offers substantial speed-up of the engineering process. Addition-
ally, the automatic generation of BPEL stubs minimizes the risk of inconsistent

process implementations by the parties. The main transformation problems are
related to blocking workunits and choices.

In [21], the transformation of blocking workunits depends on the context. If
it is nested in a choice, the workunit is mapped to a pick-branch. If it is nested
in a parallel, the blocking is mapped to links from all sources from where the
variable could be written. We propose to map such workunits to a receive in
BPEL, because it is not clear how a blocking workunit should be treated that is
nested e.g. within a choice which is itself nested in a parallel element. For this
reason, we advocate to let a BPEL engineer decide. The problem of WS-CDL’s
choice is that it may have event-based or data-based decision semantics, or even
mixtures of both. In BPEL, both cases have to be mapped either to a switch
or a pick. It is an advantage of languages like Petri nets that allow to represent
both cases as a place followed by a transition for each alternative branch.

Furthermore, we integrate advanced interaction patterns into both specifica-
tion languages. This allowed us to intuitively depict some of the difficulties re-
lated to more complex interaction issues. We can observe, that the expressiveness
of BPEL outbalances the semantics of WS-CDL when it comes to the integration
of advanced interaction patterns. The structured activities of BPEL allow for a
more straightforward integration, whereas the specification of the same patterns
with WS-CDL’s choice and workunit activities and related block conditions
are a non-trivial task due to WS-CDL’s focus on binary interactions.

We did not analyze all complex service interaction patterns like One-to-Many
Send, One-to-Many Receive or Racing Incoming Messages [4] as this has been
beyond the scope of article. In [4], the authors partly show that BPEL lacks
sufficient support, especially advanced patterns. A comprehensive evaluation of
WS-CDL with respect to the interaction patterns is still missing. As a resolu-
tion to this issue, we propose the modelling of choreographies with the help of a
more abstract language - in the sense of being more independent of underlying
technology - like e.g., UML 2.0 Activity Diagrams. Although we only specified
the advanced service interaction pattern Contingent Request with the help of
an informal constaint associated to the document node in the UML 2.0 Activity
Diagram (Figure 1), it would be possible to specify the requirement in a formal
way (e.g., with the help of OCL). It is obvious that UML provides enough ex-
pressive power to integrate these patterns. Its visual formalism adds significantly
to the user convenience. The specification can subsequently be transformed into
technology-driven standards like WS-CDL and WS-BPEL. This is part of ongo-
ing research efforts of our research groups.

References

1. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web Services
Choreography Description Language Version 1.0. W3C Working Draft 17 Decem-
ber 2004, World Wide Web Consortium (2004)

2. Andrews, T., et al.: Business Process Execution Language for Web Services, Ver-
sion 1.1. , BEA, IBM, Microsoft, SAP, Siebel (2003)

3. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Service Chore-
ography Description Language (WS-CDL). BPTrends Newsletter 3 (2005)

4. Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business
Process Management, 3rd International Conference, BPM 2005, Nancy, France,
September 5-8, 2005, Proceedings. Volume 3649. (2005) 302–318

5. van der Aalst, W.M.P., Weske, M.: The p2p approach to interorganizational work-
flows. In Dittrich, K.R., Geppert, A., Norrie, M.C., eds.: CAiSE. Volume 2068 of
Lecture Notes in Computer Science., Springer (2001) 140–156

6. Bussler, C.: Enterprise Application Integration and Business-to-Business Inte-
gration Processes. In: Process Aware Information Systems: Bridging People and
Software Through Process Technology. Wiley Publishing (2005) 61–82

7. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36 (2003)
46–52

8. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Archi-
tectures and Applications. Springer Verlag, Berlin et al. (2003)

9. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., Williams, S.: Web Service
Conversation Language (WSCL) 1.0. W3C Note 14 March, World Wide Web
Consortium (2002)

10. Arkin, A., Askary, S., Fordin, S., Kawaguchi, K., Orchard, D., Pogliani, S., Riemer,
K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S.: Web Service Choreog-
raphy Interface (WSCI) 1.0. W3C Note 8 August, World Wide Web Consortium
(2002)

11. Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Clark, J., Smith, N., Yunker, J.,
Riemer, K.: ebXML Business Process Specification Schema Version 1.01. Specifi-
cation, UN/CEFACT and OASIS (2001)

12. Thatte, S.: XLANG: Web Services for Business Process Design. Specification,
Microsoft Corp. (2001)

13. Leymann, F.: Web Services Flow Language (WSFL). Specification, IBM Corp.
(2001)

14. Arkin, A.: Business Process Modeling Language (BPML). Specification, BPMI.org
(2002)

15. Workflow Management Coalition: Workflow Process Definition Interface – XML
Process Definition Language. Document Number WFMC-TC-1025, October 25,
2002, Version 1.0, Workflow Management Coalition (2002)

16. van der Aalst, W.: Loosely coupled interorganizational workflows: Modeling and
analyzing workflows crossing organizational boundaries. Information and Manage-
ment 37 (2000) 67–75

17. Grefen, P.W.P.J., Aberer, K., Ludwig, H., Hoffner, Y.: Crossflow: Cross-
organizational workflow management for service outsourcing in dynamic virtual
enterprises. IEEE Data Eng. Bull. 24 (2001) 52–57

18. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service chore-
ographies. Electr. Notes Theor. Comput. Sci. 105 (2004) 73–94

19. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quarterly 28 (2004) 75–105

20. Mendling, J., Hafner, M.: From inter-organizational workflows to process execu-
tion: Generating bpel from ws-cdl. In: OTM Workshops. Volume 3762 of Lecture
Notes in Computer Science., Springer (2005) 506–515

21. Weber, I.: Automation in collaborative business process instantiation.
Diploma thesis, Universität Karlsruhe (TH), Institute for Program Struc-
tures and Data Organization, http://imweber.de/downloads/Diploma Thesis--
Ingo Weber.pdf (2005)

22. Weber, I., Haller, J., Mülle, J.A.: Derivation of executable business processes from
choreographies in virtual organizations. In: Proc. of XML4BPM 2006, http://
wi.wu-wien.ac.at/home/mendling/XML4BPM2006/XML4BPM-Weber.pdf (2006)

23. Gardner, T.: UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS. In: Proceedings of the First European Workshop on Object Orientation
and Web Services at ECOOP 2003. (2003)

24. Hofreiter, B., Huemer, C.: Transforming umm business collaboration models to
bpel. In Meersman, R., Tari, Z., Corsaro, A., eds.: OTM Workshops. Volume 3292
of Lecture Notes in Computer Science., Springer (2004) 507–519

25. Hafner, M., Breu, R., Breu, M., Nowak, A.: Modeling inter-organizational workflow
security in a peer-to-peer environment. In: Proceedings of ICWS. (2005)

26. Hafner, M., Breu, R., Breu, M.: A security architecture for inter-organizational
workflows: Putting security standards for web services together. In Chen, C.S.,
et al., J.F., eds.: Proceedings ICEIS. (2005)

27. Breu, R., Hafner, M., Weber, B., Novak, A.: Model driven security for inter-
organizational workflows in e-government. In Böhlen, M.H., Gamper, J., Polasek,
W., Wimmer, M., eds.: TCGOV. Volume 3416 of LNCS. (2005) 122–133

28. Hafner, M., Breu, R.: Realizing model driven security for inter-organizational work-
flows with ws-cdl and uml 2.0 - bringing web services, security and uml together.
In: to appear in Proceedings of MODELS. (2005)

