
Service Oriented Architectures

Module 1 - Basic technologies

Unit 1 – Introduction

Ernesto Damiani

Università di Milano

Lesson 1 – Introduction



Course outline

• Web page: http://ra.crema.unimi.it
– This is where all the lecture materials and additional 

pointers can be found

• Course syllabus (summary):
– Web service basics

SOAP
WSDL
UDDI

– Service Composition & BPEL
– Messaging
– Web 2.0 and REST
– Mashups
– SOA and integration architectures
– Presentations from industry



Multi-tiered structure of Web
applications (1)

• Multi-tiered architectures result from adding an 
additional layer to allow clients to access applications 
via a Web server

•The addition of the Web layer led to the notion of 
“application servers”, middleware platforms 
supporting access via the Web



Multi-tiered structure of Web 
applications (2)



HTTP parameter passing (1)

• The introduction of forms for allowing users to 
provide information to a web server required to 
modify HTML (and HTTP) but it provided a more 
advanced interface than just retrieving files



HTTP parameter passing (2)

– Exercise: explain the meaning of all lines of the following 
HTTP exchange

POST /cgi-bin/post-query HTTP/1.0

Accept: www/source

Accept: text/html

Accept: video/mpeg

Accept: image/jpeg

...

Accept: application/postscript

User-Agent: Lynx/2.2 libwww/2.14

From: grobe@www.cc.ukans.edu

Content-type: application/x-www-form-urlencoded

Content-length: 150

* a blank line *

&name = E

&email= ernesto.damiani@unimi.it



CGI heritage (1)

• The earliest implementations of Web applications 
were built directly upon the existing systems.

• The CGI script (or program) acted as client in the 
traditional sense (for instance using RPC)

– the user clicked in a given URL and the server invoked the 
corresponding script

– the script executed, produced the results and passed them 
back to the server (usually as the address of a web page)

– the server retrieved the page and send it to the browser



CGI heritage (2)



Why CGIs don’t scale (1)

• CGI have several problems that are not easy to 
solve:

– CGI scripts are separate processes, requiring additional 
context switches when a call is made (and thereby adding 
to the overall delay)

– Fast-CGI allows calls to be made to a single running 
process but it still requires two context switches

– CGI is really a quick hack not designed for performance, 
security, scalability, etc. 



Why CGIs don’t scale (2)



From thin to thick clients (1)

• A conventional web browser does not do much 
beyond displaying data

– the processing power at the client is not used

• By adding a JVM (Java Virtual Machine) to the 
browser, now it becomes possible to dynamically 
download the client functionality (an applet) every 
time it is needed

– The client becomes truly independent of the operating 
system and is always under the control of the server



From thin to thick clients (2)



From CGI to servlets (1)

• Servlets have the same role as CGI scripts: they 
provide a way to invoke a program in response to 
an http request.

• BUT, servlets run as threads of the Java server 
process (not necessarily the web server) not as 
separate OS processes



From CGI to servlets (2)



Launching a servlet



Web-based access to enterprise systems



A critical view of the business Web (1)

• HTTP was originally designed as a document 
exchange protocol (request a document, get the 
document, render/display it)

– It is almost like e-mail (in fact, it uses RFC 822 compliant 
mail headers and MIME types)

– The document format (HTML) was designed to cope with 
GUI problems



A critical view of the business Web (2)

• Interaction through document exchange can be 
very inefficient when the two sides of the interaction 
are programs (documents must be created, sent, 
parsed on arrival, etc.)

• The initial WWW model was biased towards the 
server 

– the client (the browser) does not do much beyond 
displaying the document

– for complex applications, that meant much more traffic 
between client and server

high loads at the server as the number of users increases



From Web-mediated application access 
to B2B (1)

• The basic idea behind B2B follows the 
client/server model

• A service provided by one company can be 
directly invoked by a client running in another 
company



From Web-mediated application access 
to B2B (2)

• Problems
– joint development of client and server is not possible

– the server and client are likely to be hidden behind 
firewalls

– the interaction takes place among existing systems, it is 
not possible to assume the IT platforms will be uniform

– the Internet is cheap but open to everybody (unlike 
leased lines that are expensive but private)

Existing systems/protocols are not really designed for such 
type of interactions



Predecessors: RPC remote calls



Web service architecture (1)

• IBM’s Web service architecture composed of 
three elements:

1. Service requester: the potential user of a service (the 
client)

2. Service provider: the entity that implements the service 
and offers to carry it out on behalf of the requester (the 
server)

3. Service registry: a place where available services are 
listed and that allows providers to advertise their 
services and requesters to lookup and query for services



Web service architecture (2)



Main standards (1)

• The Web service architecture proposed by IBM is 

based on two key concepts:
– architecture of existing synchronous middleware platforms

– current specifications of SOAP, UDDI and WSDL

• It has a remarkable client/server flavor

• It reflects only what can be done with
– SOAP (Simple Object Access Protocol)

– UDDI (Universal Description and Discovery Protocol)

– WSDL (Web Services Description Language)



Main standards (2)



WS benefits

• One important difference with conventional 
middleware is related to the standardization efforts 
at the W3C that guarantee:

– Platform independence (Hardware, Operating System)
– Use of existing networking infrastructure (HTTP)
– Programming language neutrality (.NET talks with Java)
– Portability across middleware tools of different Vendors

• Web services are “loosely coupled” components 
that foster software reuse

• WS technologies are composable and can be 
adopted incrementally



WS standards



SOA vs WS

• Web services are about Interoperability
– Standardization
– Integration across heterogeneous, distributed systems
– Service Oriented Architectures are about:
– Large scale software design
– Software Engineering
– Architecture of distributed systems

• SOA is possible but more difficult without Web 
services

– SOA introduces some radical changes to software:
Language independence (what matters is the interface)

Event based interaction (no longer synchronous models)

Message based exchanges (no RPC)

Composition and orchestration



Dynamic Binding

• WS Invocation Framework
– Use WSDL to describe a service

– Use WSIF to let the system decide what to do when the 
service is invoked:

If the call is to a local EJB then do nothing

If the call is to a remote EJB then use RMI

If the call is to a queue then use JMS

If the call is to a remote Web service then use SOAP and XML

• There is a single interface description, the system 
decides on the binding

– This type of functionality is at the core of the notion of 
Service Oriented Architecture

FINE


