Lesson 1 — Introduction

Ernesto Damiani

Universita di Milano

Course outline

e Web page: http://ra.crema.unimi.it
— This is where all the lecture materials and additional
pointers can be found

e Course syllabus (summary):

— Web service basics
= SOAP
= WSDL
= UDDI

— Service Composition & BPEL

— Messaging

— Web 2.0 and REST

— Mashups

— SOA and integration architectures
— Presentations from industry

Multi-tiered structure of Web
applications (1)

e Multi-tiered architectures result from adding an
additional layer to allow clients to access applications
via a Web server

eThe addition of the Web layer led to the notion of
“application servers”, middleware platforms
supporting access via the Web

Multi-tiered structure of Web
applications (2)

MIDDLEWARE

HTTP parameter passing (1)

e The introduction of forms for allowing users to
provide information to a web server required to
modify HTML (and HTTP) but it provided a more
advanced interface than just retrieving files

HTTP parameter passing (2)

— Exercise: explain the meaning of all lines of the following
HTTP exchange

» POST /cgi-bin/post-query HTTP/1.0
= Accept: www/source

» Accept: text/html

= Accept: video/mpeg

= Accept: image/jpeg

= Accept: application/postscript

» User-Agent: Lynx/2.2 libowww/2.14
* From: grobe@www.cc.ukans.edu

» Content-type: application/x-www-form-urlencoded
» Content-length: 150

» * a blank line *

= &name = E

» &email= ernesto.damiani@unimi.it

CGI heritage (1)

e The earliest implementations of Web applications
were built directly upon the existing systems.

e The CGI script (or program) acted as client in the

traditional sense (for instance using RPC)

— the user clicked in a given URL and the server invoked the
corresponding script

— the script executed, produced the results and passed them
back to the server (usually as the address of a web page)

— the server retrieved the page and send it to the browser

CGI heritage (2)

respanse
Page

Implemented
as a normal client

Existing Middl)eware Infrastructure

Why CGls don’t scale (1)

e CGI have several problems that are not easy to
solve:

— CGI scripts are separate processes, requiring additional
context switches when a call is made (and thereby adding
to the overall delay)

— Fast-CGl allows calls to be made to a single running
process but it still requires two context switches

— CGl is really a quick hack not designed for performance,
security, scalability, etc.

Why CGIls don’t scale (2)

Request 1 Request 2
\ Web server process

\ Normal CGI calls

CGI script
child process 2

CGI script
child process 1

Call to
underlying
middleware

Request 1 Request 2
\ Web server process

\ Fast CGI calls

CGI script
child process 1

Call to
underlving
middleware

From thin to thick clients (1)

e A conventional web browser does not do much
beyond displaying data

— the processing power at the client is not used
e By adding a JVM (Java Virtual Machine) to the
browser, now it becomes possible to dynamically
download the client functionality (an applet) every

time It IS needed

— The client becomes truly independent of the operating
system and is always under the control of the server

From thin to

browser

JVIM

1. Get
client

AL C/s
systemn

User

o gram

ESET
program

e

progranm

thick clients (2)

From CGI to serviets (1)

e Servilets have the same role as CGI scripts: they
provide a way to invoke a program in response to
an http request.

e BUT, servlets run as threads of the Java server
process (not necessarily the web server) not as
separate OS processes

From CGI to serviets (2)

Request 1 Request 2
N, A"

\ \ Java server process

LY (LR R RN RN LA Illlilll-llllllllll-lll* ':ﬂ

thread

Call servlets

\

tllllllll-lll-* S-E'I"V].'E't
child thread 2

Servlet
child thread 1

i 1

Call to
underlying
middleware

Launching a servlet

a‘/_ HTML request includes _\

< SERVLET NAME=MyServlet>
< PARAM NAME=paraml VALUE=vall=>
< PARAM NAME=param2 VALUE=vall=

</SERVLET=

l _____

/ Servlet code \\

umport java servlet *:
public class MyServlet extends GenericServlet {
public void service (
ServletRequest request.

ServletResponse response ‘ HTML

) throws ServletException. I0Exception document

{
-

,J

- ™\

AN S/

~

4

Web-based access to enterprise systems

af

browser

CGl script calls

! :
TP Client| |TP Client

Monthly
average revenue 7

Internet

Yearly balance ?

k.

TP-Monitor
environment

E = recoverable
g BE queue
22
8‘, =
= app server 3
Branch 1 Branch 2 Finance Dept.

=

A critical view of the business Web (1)

e HTTP was originally designed as a document
exchange protocol (request a document, get the
document, render/display Iit)

— It i1s almost like e-mail (in fact, it uses RFC 822 compliant
mail headers and MIME types)

— The document format (HTML) was designed to cope with
GUI problems

A critical view of the business Web (2)

e Interaction through document exchange can be
very inefficient when the two sides of the interaction
are programs (documents must be created, sent,
parsed on arrival, etc.)

e The Iinitial WWW model was biased towards the

server

— the client (the browser) does not do much beyond
displaying the document

— for complex applications, that meant much more traffic
between client and server

* high loads at the server as the number of users increases

From Web-mediated application access
to B2B (1)

e The basic idea behind B2B follows the
client/server model

e A service provided by one company can be
directly invoked by a client running in another
company

From Web-mediated application access
to B2B (2)

e Problems

— joint development of client and server is not possible

— the server and client are likely to be hidden behind
firewalls

— the interaction takes place among existing systems, it iIs
not possible to assume the IT platforms will be uniform

— the Internet is cheap but open to everybody (unlike
leased lines that are expensive but private)

» Existing systems/protocols are not really designed for such
type of interactions

Predecessors: RPC remote calls

i Y
TL
DElElL‘ll."iIHEHI:
- {EII!ILUIIIII'«THL
oL
2oUDCE
Applicanion client TDL oom piler Applicarton = over
procedure ‘ 1 : i procedure
Languagegpecific Ini=fac= Language gpecific
call inrerface : | header | - call inrerface
l Climnr aubs I-ll' ------ . L----: ; Jlll-l Errver aubs]
BEFPC APT EFC AFT
EFPC run-oims EFC rwn-rime

service libmary aervice librane

DCE sscurity
e rvices

Web service architecture (1)

e IBM’s Web service architecture composed of

three elements:

1. Service requester: the potential user of a service (the
client)

2. Service provider: the entity that implements the service
and offers to carry it out on behalf of the requester (the
server)

3. Service registry: a place where available services are
listed and that allows providers to advertise their
services and requesters to lookup and query for services

Web service architecture (2)

’ SERVICE “Rﬁl
REGISTRY \
L \
':-1 Service
) description /<
/\ \ 1
/ . PUBLISH

/ \

/ N

) SERYICE \
/ \ PROVIDER '
.< Service \
SERVICE description
REQUESI‘ER BIND

/
\ Service interface y
\ 1"\\ Service .-/

Main standards (1)

e The Web service architecture proposed by IBM is
based on two key concepts:

— architecture of existing synchronous middleware platforms
— current specifications of SOAP, UDDI and WSDL

e It has a remarkable client/server flavor

e It reflects only what can be done with

— SOAP (Simple Object Access Protocol)
— UDDI (Universal Description and Discovery Protocol)
— WSDL (Web Services Description Language)

Main standards (2)

UDDI

SERVICE
REGISTRY

Service
description

FIND *. J PUBLISH

SOAP SERYICE
PROVIDER
Service
SERVICE | description >
REQUESTER —_—

Service Interfoce

Service

WSDL

WS benefits

e One important difference with conventional
middleware is related to the standardization efforts
at the W3C that guarantee:

— Platform independence (Hardware, Operating System)
— Use of existing networking infrastructure (HTTP)

— Programming language neutrality (.NET talks with Java)
— Portability across middleware tools of different Vendors

e Web services are “loosely coupled” components
that foster software reuse

e WS technologies are composable and can be
adopted incrementally

WS standards

Transport HTTE, HOP, SMTP, IMS
Messaging XML, SOAP WS5-Addressing
Description XML Schema, WSDL WS-Policy, SSDL
Discovery uDDI WS-MetadataExchange
Choreography WSCL WSl WS-Coordination
Business Processes WS-BPEL BEML WSCDL
Stateful Resources W5-Resource Framework

W5S-Transactions

Transactions WE-LAT W5-Business Activities

Reliable Messaging WSs-Reliability W5S-ReliableMessaging
Security WS-Security WS-Trust, WS-Priuaf_:y
SAML, XACML WS5-SecureConversation
Event Notification WS-Notification W5-Eventing
Management WS5DM W5-Management
Data Access OGSA-DA] D0

SOA vs WS

- Web services are about Interoperability
— Standardization
— Integration across heterogeneous, distributed systems
— Service Oriented Architectures are about:
— Large scale software design
— Software Engineering
— Architecture of distributed systems

- SOA is possible but more difficult without Web
services

— SOA introduces some radical changes to software:
» Language independence (what matters is the interface)
» Event based interaction (no longer synchronous models)
» Message based exchanges (no RPC)
= Composition and orchestration

Dynamic Binding

e WS Invocation Framework

— Use WSDL to describe a service

— Use WSIF to let the system decide what to do when the
service is invoked:

» |f the call is to a local EJB then do nothing

= If the call is to a remote EJB then use RMI

» If the call is to a queue then use JMS

» If the call is to a remote Web service then use SOAP and XML

e There Is a single interface description, the system
decides on the binding

— This type of functionality is at the core of the notion of
Service Oriented Architecture

.
pos
o330
P49y,
A
Z
STl
e
so44?
9944
0:9

