Lesson 11 — Programming language

Ernesto Damiani

Universita di Milano

Variables

e Used to store, reformat and transform messages
e Required to send and receive messages

e Each variable has a Type

Example:

<variables>
<variable name="loanZpplication™
messageType="ns2:LoanServiceRequestMess
age />

</variables>

Activities (1)

Primitive Activities Structured Activities

<invoke:= <sequence=
<receive> <switch>
<assign> <pick>
{reply} <flow=
<throw= <[link=
<terminate> <while>

<wait> <scope>

Activities (2)

® <invoke>
— Invoke a service synchronously
= Ex.: Invoke Credit Service
® <receive>
- Waits for the incoming message, either to start the process or
for a callback
= Ex.: Wait for a message from United Loan
e <reply>
— Return response for synchronous process, relate to
initial <receive>
® <assign>

— Copy data between variables, expressions and endpoint
references

— Used with XPath expressions and XSLT engine
» Ex.: Copy Load Application from input payload to United Loan input

Scope

e Scopes can be used to divide the business process
Into organized parts

e A <scope> Is an execution context for the
contained activities, and a process Is, itself, a
<scope=>

e A <scope=> defines local variables and can catch
and handle either specific faults or all faults that

occur with it

— Ex: GetCreditRating Scope — Invoke Credit Service and
catch exceptions

Control flow (1)

e BPEL provides the usual branching and looping
control flow constructs

e A <sequence> executes activities in serial order

e A <switch> executes at most one alternative based
on expressions specified on child <case> elements
with an optional <otherwise>

— EXx: choose between United and Star Loan offers based on
lower APR

e A <while> loops through activities while a
variable's value is true

Control flow (2)

e BPEL provides a parallel control construct through

the <flow> activity
— Ex: Invoke United and Star Loan services in parallel

e More complex synchronization is achieved
through "join" expressions composed of link
statuses and boolean operations (&& and ||)

Partner Links

e Links to all parties that process interacts

e Links can be to Web Services

— Ex: CreditService, UnitedLoanService, StarLoanService

e Links can be to other BPEL processes as well

e PartnerLinkTypes
— Declares how parties interact and what each party offers

Fault handling

e Handle faults to enable completion of process using
<faultHandlers>

e Use <catch> activity to handle specific faults
— EX: catch bad credit exception and terminate the process

e Use <catchAll> to handle all other faults

Event handling

e Message events

— Useful to address wait for several messages

e Alarm events

— Make process wait for a callback for a certain period of time

e <pick> activity
— Process should wait the occurrence of one event in a set of
events

» Ex: Loan Flow could be changed to use <pick> activity that
waits only 30 minutes for a Loan request

Correlation (1)

e BPEL correlates messages based on properties
referenced Iin a <correlationSet>

e Multiple properties can be combined into a
composite correlation key

e Properties are typed by XML Schema simple types
and bound ("aliased") via Xpath expressions to
locations in message parts

Correlation (2)

e Non-determinism

e A <pick> activity waits: for a message specified by
an <onMessage=> child element, where correlation
allows a specific process instance to be addressed
for an amount of time or until a time, specified with
an <onAlarm=> child element

Steps to build business process

Step 1: define public interface

e Deliverables:

— WSDL description of the interface of the implemented

BPEL process
LoanRow
BPEL Process
WSDL

i

E Inltiate i

| - 32
i Client j 2
| |
| i

Callback ? J
L b

1
<F=t onResult | |
1
1

LaanFlow.wsdl

Step 2: create partner dictionary

e Deliverables:

— List of the WSDL of the services that will be invoked as
part of the BPEL Process

— For each partner, document the order in which
operations will be invoked (choreography)

— Make sure that each use case describes both positive
and negative use cases

X f . - : . F :
BPEL Process i Credit Rating
WSDL L
Inltlats : ‘
Clicnt #

Callback ﬁ J

Jr',:r onResult

:_!j United Loan
LoanFlow.wsdl =

A

Deployment Descriplor
binding

End point refarence

e Deliverables:

— A set of XML Schema files that describe the type of the
messages and XML documents used as part of the

BPEL

process

WSDL

LoanElow

Inlflats B

Client
Callback

4w onResult

LoanRow
BPEL Process

3
¥

variables
Schedule Feguest

LoanFlow.wsdl

Exchange Fegquest

SDES..

Deployment Desariplor
End point reference
bkinding

Step 3: create message and
type dictionary

bpel.xml

:_!: United Loan
| LF]

Step 4: transformation logic

e Deliverables:

— A set of XSLT and XQuery files that encapsulate
mapping information across the various types used in
the BPEL process

LoanRow
BPEL Process
WSDL
LoanFlow E o
¥
Inililzts —.,":- 4 8 E
aae ¥? 35
o ‘E 2
Client E E E
Callkback z
aiisas variables 2o
4w onResult loanApplication Ehﬁ
crinput

crOutput
LoanFlow.wsdl Pe— bpel.xml

Step 5: orchestration logic

e Deliverables:

— Implement the workflow that ties the interactions
across partners into an end-to-end business process

— Make sure that all exceptions and timeouts are
managed properly

Credit Rating
Jynchronous
inwroke>

Star Loan

United Loan gt

Zinwvoka:
: Trecelver,
% e rmivas, - :

Step 6: iterate

e Deliverables:
— Add incrementally new partners

— Keep on improving exception management
— Create automated test and regression framework

LoanRow |
BPEL Process A
WSDL i Start Loan
LoanElow E 1]
to
I o @
Inlélats B 85 .
ol c
: E=E
Climnt E E- E
Callback =
s variables Zo
P onfesult loa lication éﬂﬁ
crinput

chutEut
LoanFlow.wsdl more.. bpel.xmil

Step 7: create test environment (1)

e Deliverables:

— Implement dummy test services for each end point
(could be BPEL or your favorite Web services
publishing technology)

— Create test scenario for each positive and negative use
cases

Step 7: create test environment (2)

— Crash test, longevity test (integrity/reliability)
— Performance test, stress test

Dummy Test Services

LoanRow
BPEL Process
WsDL orchestration

LoanFlaow I'g_ E"

| gy e
nitlate l_:> i -]
2% 2
Client 5 E E

ESLLEEER variables _E‘ =

== onResuit loankpplication &

crinput =

r:,rEruI_:Eut

LoanFlow.wsdl more. bpel.xml

e Deliverables:

Step 8: live pilot

— Wire BPEL process to real end points

— Run regression tests

WSDL
LoanFlow

Initiats

Client
Callback

== onResult

LoanFlow.wsdl

LoanRow
BPEL Process

orchestration

variables
loandpplication
crinput
crOutput

mores...

Integration owver
internetfintranst

End point reference
binding

Dep kayrment Descrplor

bpel.xmil

Step 9: fine-tune operation
tasks

e Deliverables:
— Exception Management
— Integration with Web Service Management Framework
— Security
— Archiving

Cross platform

Application Server IDE

- Oracle Application Server - JDeveloper

- WebLoqgic Server - Eclipse

- WebSphere

- JBoss

Database Dpu_';'rating Systems
- Oracle Database - Linux

- SQL Server - Window XP/2003
- Oracle Lite - Solaris

- Sybase - HP UX

- Pointbase

- z0OS

BPEL Designer

— Native BPEL Support

— Drag-and-drop process modeler
— UDDI and WSIL service browser
— Visual XPATH editor

— One-click build and deploy

......

LI LA
" i ey e bl

BPEL Console (1)

e Key features
— Visual Monitoring
— Auditing
— BPEL Debugging
— In-flight Instance

— Administration
— Performance Tuning
— Partitioning/Domains

BPEL Console (2)

[t L UL L

[
T . [L
--------- a2 i e e s L -
L LEI AT = LY
IRETL ST 1 i b
Cudbword | B s [Lalessr
- T
e

Example: loan service

Lizan Procursment Pl

10:002m

. llg. i =1 il rabing

(NEE N | hancle negaties

credit sezeption

SEice
i-Lm‘m x2ban TR et Nk prace:s application E
Liritad Lan Shai Loan
Senmoe on Loen offer ey o lagn offer ready Servce

PECETE

agpre, =]

Sefect Lowest Oy

LIEHLE)

— The problem

— e.g. in programming: X = x+1 and X = X+Yy in
sequence/in parallel

— Databases, Distributed networking

— ACID
= Atomic
= Consistent
» |solated
» Durable
= Traditional transactions

Two phase commit

Coardinzor Participant

Il i
Il o
[_ (Vi Risjasstod)

FUEE; BOT VRS 1
Vioda Comimit

Y '

| Wait A ¥
{Fam W) WiaiL i
\ d | [fer gn-ahna) ||
Ay Wole Against {Allwgnes For) -

Send Aborts Sand Commils AT {Commit)

o

Extended transactions

e Need for Extended Transactions in Web Services

e Rationale for Non-ACID requirements

— Long duration, alternate failure handling, selected outcome
Inclusion, non-blocking across enterprises

e \Web Services Protocols and Framework Standards

— WS-Coordination
— WS-Atomic Transaction
— WS-Business Activity

Classic and basic transactions

Appkcation

i -
oo ey
P ™ w7
! o

:l"_"'-l

-

&

v L)

I Welb Sarvica A Wab Service B Wb Sarvice G
T T ¥ 1 T

YWeb Service A Web Servoe B Web Serve © 1 =5

:th'ul I.' Aasull ; . :Hllxl.l'. ;
Flight Hode Renial Car

Flighi Habal Fantal Car . I -

Basul
T

Compansabe

