

Designing distributed
interactions

Ernesto Damiani

Design recipe
 Two simple steps:

 Build a mathematical model of the object - let’s
call it the design

 Use maths to check that the design, in the context
where it is deployed, has the properties we need

 Three basic caveats
 The design may not faithfully represent the real

thing,
 The expected context may differ from the real one
 Calculations may contain errors

Applying the recipe to
computations
 Maths = formal logics
 Designs = formal descriptions of computations in some

logics
 programs represented as logic formulas

 Property check = deduction:
 automated theorem proving, model checking, static analysis, etc.
 Soundness & completeness

 Problem: deduction of properties is computationally hard or
even undecidable

Handling complexity
 Restrict/weaken properties to be checked

 Give up deduction soundness and/or
completeness

 Represent the computation only partially, via
approximate designs

 Use human guidance

Comparison with test and
simulation
 Simulation considers a model of the computation, but

it’s not a design
 Sim model are conceived for execution rather than analysis

 Testing considers the real software implementing the
computation
 Model can be used to generate test cases

 Sim and Test examine only some of the possible
behaviors
 Can’t extrapolate from partial tests/executions: only

statistical projections

Example
 Lamport’s Bakery Algorithm

 http://en.wikipedia.org/wiki/Lamport's_bakery_algorithm

 In a waiting room, a machine dispenses tickets printed
with numbers that increase monotonically

 People enter the waiting room; when entering, each
person takes a ticket from the machine and starts
waiting

 When the service becomes available, the waiting person
with the lowest numbered ticket is served, and leaves
the waiting room

http://en.wikipedia.org/wiki/Lamport's_bakery_algorithm

Example
 Which properties are we interested in?

 Safety: at most one person is being served at a time
 Liveness: each person is eventually served

 Looks straightforward: the ticket dispenser never
prints the same number twice and service time is
finite

 Can we preserve these properties without a ticket
dispenser?

Example
 Each process has a public register, initially zero
 When it wants to access the service, a process sets its

register at a value greater than the one of any other
waiting process

 Then it waits until its register is smaller than that of
any other process

 At which point it access the service as soon as it is
available

 After the service, the register goes back to 0
 EXERCISE: prove safety!

How to do it
 Build a mathematical model (design) of the protocol
 Analyze it for the desired property (safety)

 Must choose
 a modeling style that supports the analysis
 how much detail to include in the design

 The protocol uses shared memory and is sensitive to:
 memory faults (what if a public register contains a wrong value?)
 atomicity and ordering of concurrent reads and writes (what if

two processes enter the room at the same time?)

 Need the “right” assumptions

Modeling datatypes in logic

 Registers must be modeled as natural
numbers
 Natural numbers : Peano axioms
 Constructors:

 0, succ (i.e. nats are 0, succ(0), succ(succ(0)),..
 Corresponds to the induction axiom / scheme

 Freeness axioms:
 forall x exists : nat 0 =/ succ(x)
 forall x,y : succ(x) = succ(y) implies x = y

Example
 Assume: faultless memory, totally ordered atomic read/writes,

two processes only
 Process can be in 3 states: outside_room, in_room_waiting,

being_serviced
 Local memory is represented by my_reg (a natural number)

 Initial state: outside_room (my_reg=0)
 Transition 1: start: outside_room(0) next:

in_room_waiting(otherproc:succ(my_reg))
 Transition 2: start: in_room_waiting(my_reg),

condition(my_reg<otherproc:myreg), next: being_serviced(my_reg)
 Transition 3: start: being_serviced(my_reg), next: outside_room(0)

 LOOKS SAFE (BUT NOT LIVE)..

Example
 safety: NOT (pr1 = being_serviced AND pr2 =

being_serviced);

 We have to show that the space of states of
our (two-automata) example is a model for
the above formula, i.e. that the formula is
true for any reachable point in the state
space.

 Can do it by enumeration..

Security properties

 Defining security properties and
context

 Context: Network model,
adversarial power

 The notion of secure
computations

Heuristic Approach to Security

1. Build a protocol

2. Try to break the protocol

3. Fix the break

4. Return to (2)

Heuristic Approach –
Drawbacks

 You can never be really sure that the
protocol is secure

 Hackers will do anything to exploit a
weakness – if one exists, it may well be
found
 Security cannot be checked empirically (see

later)

Another Heuristic approach
 Design a protocol

 Provide a list of attacks that (provably) cannot
be carried out on the protocol

 Claim that the list is complete

 Problem: often, the list is not complete…

A Rigorous Approach
 Provide an exact problem definition

 Adversarial power
 Network model
 Meaning of security

 Prove that the protocol is secure
 Often by reduction to an assumed hard problem,

like factoring large composites

 The history of computer security shows that
the heuristic approach is likely to fail
 Security is very tricky and often anti-intuitive

Sample properties

 Confidentiality
 Sensitive information is only available to authorized persons
 No unauthorized participant (user) can discover content of locations

and/or messages.

 Integrity
 Sensitive information is only composed by authorized persons
 No unauthorized participant (user) can manipulate data

 Availability
 Sensitive activities are available (in tim) to authorized persons

Specific problems

• Which parts should we choose for modeling ?
– Security/safety critical parts have a precise

semantics

• What is the appropriate level of abstraction ?
– Completeness vs. complexity, critical aspects of

security

• Properties in the model are also properties in our
system (critical for security !)

Distributed processes..

• Research is moving from isolated, single-user programs to
distributed computations (e.g., processes on service oriented
architectures)

• Security mechanisms always chase emerging program paradigms !

• Some issues of distributed processes

• Communication between different systems
– Secure channels

– Security protocols

• No static border between „in“ and „out“

• Evolving programs („service composition“)
– Security checks on the fly?

Basic notions

• A distributed protocol consists of a set of rules
(conventions) which determine the exchange of
messages between two or more participants.
– participants: users, processes machines, ...
– often called “principals”

• Protocol steps
– n: A B: M –→ “A sends M to B according to the n-th

protocol step.”
– Messages may be structured: M = M1, ... , Mn

Example: security protocols

• Security protocols are used to establish a
secure channel

• More technically:
– exchange a shared key
– authenticate each other

Encryption aspects

• encryption of messages: n : A B : {M}K “M is →
encrypted using key K.”

• for each K exists an “inverse” K-1 : K=(K-1)-1

• keys indexed by participants:

– KA public key of A; KA,B symmetric key shared between
A and B

• for symmetric encryption : K-1 = K

• for asymmetric systems (recall asymmetric schemes!) –
K-1 private key,

• signatures – K public key: (asymmetric) encryption

Example: the Needham-
Schroeder protocol

• KB: B's public key

• KA: A's public key

• Nonces: NB NA

Is this protocol secure ?

Example

• A single instance is secure.. but if multiple
instances are run in parallel, things change

• How to win a chess game against a grand-
master
– Challenge two grand-masters at once
– Reproduce the moves of the first grand-

master on the checkboard of the second..

The attack

A man-in-the-middle attack:

• alice { alice, Nalice }Kchar charlie→⎯⎯ ⎯

• charlie {alice, Nalice }Kbob bob →⎯⎯ ⎯

• (bob {Nalice, Nbob }Kalice⎯⎯ alice)→⎯

• charlie {Nalice, Nbob }Kalice⎯⎯ alice →⎯

• alice { Nbob }Kchar⎯⎯ charlie→⎯

• charlie {Nbob }Kbob⎯⎯ bob→⎯

What's wrong?

• What’s wrong with the protocol?

• Bob wrongly believes that he is communicating with Alice.

• Problem is in the second message specification:
– 2: B A: {NA ,NB}KA →

• instantiation in the failed run:
– bob (charlie) ⎯⎯ {Nalice, Nbob }Kalice alice →⎯

• Repair: specification 2: B A: {B,NA ,NB}KA→
– bob ⎯⎯ {bob, Nalice, Nbob }Kalice alice→⎯

The problem is solved

• Trying the same attack:

• alice ⎯⎯ { alice, Nalice }Kchar charlie⎯

• charlie ⎯⎯ { alice, Nalice }Kbob bob⎯

• bob {bob, Nalice, Nbob }Kalice alice⎯⎯ ⎯

• charlie {bob, Nalice, Nbob }Kalice alice⎯⎯ ⎯

BUT: Alice expects an answer from Charlie (and not from
Bob).

But this is an ad-hoc solution

• General solution:
– Encode problem of a security protocol

analysis as a problem in a logic
– Apply a theorem prover for the logic to the

problem

• Challenge: develop specialized
logics,programs and/or (meta-)theories for
the security analysis of distributed protocols

Challenge in detail

• Formal methods can do the analysis of a finite state problem
(as we saw at the beginning)

• However, distributed protocols have infinitely many states:
– arbitrary number of principals

– arbitrary number of protocol runs

– arbitrary size of messages (generated by the attacker)

• How to handle it
– restrict number of principals

– restrict number of protocol runs

– combine different states into a single state by some criterion

Relevant research: OFMC

• Lazy and intelligent enumeration of the search
space
– Organize the search space as a tree.
– Each node is a trace of the protocol and

continues the trace of the predecessor node.

• Based on D.Basins‘s work on Lazy Infinite-
State Analysis of Security Protocols (1999)

• Part of the AVISPA-toolset (www.avispa-
project.org)

Modeling the protocol

• Enumeration of all possible traces (shortest first) using protocol rules and checking the
results wrt. to insecure states

• Attacker is the network: all messages are sent or received via the attacker

• Rules of the form:

– msg(m1) AND state(m2) AND N1 -> state(m3) AND msg(m4) AND P2

• representing positive (P1, P2) and negative (N1) facts concerning the attacker

– Examples: „intruder knows NA“, „M is secret and only known to A“ , „A has not seen the
message NB“

• and actual states of principals (state(m))

– Examples: state(roleA, step0, A, B), state(roleB, step2, A, B, NA, NB),

• Application of rules is checked via matching of messages and facts

Modeling the success

• Definition of attack-condition:

• condition under which an attack is successful

• Syntactically, has the form of the left hand side of a rule:

• ar = msg(m1).state(m2).P1 .N1 ...
– Example: secret(M, {A, B}), i_knows(M), : secret(M, i)

• State S is a successful attack iff ar is „applicable“ in S.

• Protocol is secure iff for all reachable states S and all attack
conditions ar: ar is not „applicable“ in S.

Other approaches

• Strand objects
– Framework on security protocols

• exploring the structure of a protocol,
• exploring the possible combination of local runs (at the principles) of a protocol to a

common protocol
– Based on the Dolev-Yao model
– Developed by: Joshua Guttman, Jonathan C. Herzog, F. Javier Thayer (1998)
– Implemented (partly) in the Athena – system

• Inductive theorem proving
– Modeling security protocols in an expressive, universal logic (HO-logic)
– Messages and protocol traces as abstract data types
– Modeling the knowledge of principals and attacker as functions on message

lists (that the principal has seen before)
– Pioneered by L. Paulson using Isabelle (later: other proof tools like Coq, VSE,

etc)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

