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Design recipe 
 Two simple steps:

 Build a mathematical model of the object  - let’s 
call it the design

 Use maths to check that the design, in the context 
where it is deployed, has the properties we need

 Three basic caveats
 The design may not faithfully represent the real 

thing,
 The expected context may differ from the real one
 Calculations may contain errors



  

Applying the recipe to 
computations
 Maths = formal logics 
 Designs = formal descriptions of computations in some 

logics
 programs represented as logic formulas

 Property check = deduction:
 automated theorem proving, model checking, static analysis, etc.
 Soundness & completeness

 Problem: deduction of properties is computationally hard or 
even undecidable



  

Handling complexity
 Restrict/weaken properties to be checked

 Give up deduction soundness and/or 
completeness

 Represent the computation only partially, via 
approximate designs

 Use human guidance



  

Comparison with test and 
simulation
 Simulation considers a model of the computation, but 

it’s not a design
 Sim model are conceived for execution rather than analysis

 Testing considers the real software implementing the 
computation
 Model can be used to generate test cases

 Sim and Test examine only some of the possible 
behaviors
 Can’t extrapolate from partial tests/executions: only 

statistical projections 



  

Example
 Lamport’s Bakery Algorithm

 http://en.wikipedia.org/wiki/Lamport's_bakery_algorithm

 In a waiting room, a machine dispenses tickets printed 
with numbers that increase monotonically

 People enter the waiting room; when entering, each 
person takes a ticket from the machine and starts 
waiting

 When the service becomes available, the waiting person 
with the lowest numbered ticket is served, and leaves 
the waiting room

http://en.wikipedia.org/wiki/Lamport's_bakery_algorithm


  

Example
 Which properties are we interested in?

 Safety: at most one person is being served at a time
 Liveness: each person is eventually served

 Looks straightforward: the ticket dispenser never 
prints the same number twice and service time is 
finite

 Can we preserve these properties without a ticket 
dispenser?



  

Example
 Each process has a public register, initially zero
 When it wants to access the service, a process sets its 

register at a value greater than the one of any other 
waiting process

 Then it waits until its register is smaller than that of 
any other process 

 At which point it access the service as soon as it is 
available

 After the service, the register goes back to 0
 EXERCISE: prove safety!



  

How to do it
 Build a mathematical model (design) of the protocol
 Analyze it for the desired property (safety)

 Must choose 
 a modeling style that supports the analysis
 how much detail to include in the design

 The protocol uses shared memory and is sensitive to:
 memory faults (what if a public register contains a wrong value?)
 atomicity and ordering of concurrent reads and writes (what if 

two processes enter the room at the same time?)

 Need the “right” assumptions



  

Modeling datatypes in logic

 Registers must be modeled as natural 
numbers
 Natural numbers : Peano axioms
 Constructors:

 0, succ (i.e. nats are 0, succ(0), succ(succ(0)),..
 Corresponds to the induction axiom / scheme

 Freeness axioms:
 forall x exists : nat 0 =/ succ(x)
 forall x,y : succ(x) = succ(y) implies  x = y



  

Example
 Assume: faultless memory, totally ordered atomic read/writes, 

two processes only
 Process can be in 3 states: outside_room, in_room_waiting, 

being_serviced
 Local memory is represented by my_reg (a natural number)

 Initial state: outside_room (my_reg=0)
 Transition 1: start: outside_room(0) next: 

in_room_waiting(otherproc:succ(my_reg))
 Transition  2: start: in_room_waiting(my_reg), 

condition(my_reg<otherproc:myreg), next: being_serviced(my_reg)
 Transition 3: start: being_serviced(my_reg), next: outside_room(0)

 LOOKS SAFE (BUT NOT LIVE)..



  

Example
 safety: NOT (pr1 = being_serviced AND pr2 = 

being_serviced);

 We have to show that the space of states of 
our (two-automata) example is a model for 
the above formula, i.e. that the formula is 
true for any reachable point in the state 
space.

  Can do it by enumeration..



  

Security properties

 Defining security properties and 
context

 Context: Network model, 
adversarial power

 The notion of secure 
computations



  

Heuristic Approach to Security

1. Build a protocol

2. Try to break the protocol

3. Fix the break

4. Return to (2)



  

Heuristic Approach – 
Drawbacks

 You can never be really sure that the 
protocol is secure

 Hackers will do anything to exploit a 
weakness – if one exists, it may well be 
found
 Security cannot be checked empirically (see 

later)



  

Another Heuristic approach
 Design a protocol

 Provide a list of attacks that (provably) cannot 
be carried out on the protocol

 Claim that the list is complete

 Problem: often, the list is not complete…



  

A Rigorous Approach
 Provide an exact problem definition

 Adversarial power
 Network model
 Meaning of security

 Prove that the protocol is secure
 Often by reduction to an assumed hard problem, 

like factoring large composites

 The history of computer security shows that 
the heuristic approach is likely to fail
 Security is very tricky and often anti-intuitive



  

Sample properties 

 Confidentiality
 Sensitive information is only available to authorized persons
 No unauthorized participant (user) can discover content of locations 

and/or messages.

 Integrity
 Sensitive information is only composed by authorized persons
 No unauthorized participant (user) can manipulate data

 Availability
 Sensitive activities are available (in tim) to authorized persons



  

Specific problems

• Which parts should we choose for modeling ? 
–  Security/safety critical parts have a precise 

semantics

• What is the appropriate level of abstraction ? 
–  Completeness vs. complexity, critical aspects of 

security

• Properties in the model are also properties in our 
system (critical for security !)



  

Distributed processes..

• Research is moving from  isolated, single-user programs to 
distributed computations (e.g., processes on service oriented 
architectures)

• Security mechanisms always chase emerging program paradigms !

• Some issues of distributed processes

• Communication between different systems
– Secure channels

– Security protocols

• No static border between „in“ and „out“ 

• Evolving programs („service composition“) 
– Security checks on the fly?



  

Basic notions

• A distributed protocol consists of a set of rules 
(conventions) which determine the exchange of 
messages between two or more participants.
– participants: users, processes machines, ...
– often called “principals”

• Protocol steps
– n: A B: M –→ “A sends M to B according to the n-th 

protocol step.”
– Messages may be structured: M = M1, ... , Mn



  

Example: security protocols

• Security protocols are used to establish a 
secure channel

• More technically:
– exchange a shared key
– authenticate each other



  

Encryption aspects

• encryption of messages: n : A  B : {M}K “M is →
encrypted using key K.”

• for each K exists an “inverse” K-1 : K=(K-1  )-1

•  keys indexed by participants: 

– KA public key of A; KA,B symmetric key shared between 
A and B

• for symmetric encryption : K-1 = K

• for asymmetric systems (recall asymmetric schemes!) – 
K-1 private key,

• signatures – K public key: (asymmetric) encryption



  

Example: the Needham-
Schroeder protocol

• KB: B's public key

• KA: A's public key

• Nonces: NB  NA 

Is this protocol secure ?



  

Example

• A single instance is secure.. but if multiple 
instances are run in parallel, things change

• How to win a chess game against a grand-
master
– Challenge two grand-masters at once
– Reproduce the moves of the first grand-

master on the checkboard of the second..



  

The attack

A man-in-the-middle attack: 

• alice  { alice, Nalice }Kchar  charlie→⎯⎯ ⎯

• charlie  {alice, Nalice }Kbob  bob →⎯⎯ ⎯

• (bob  {Nalice, Nbob }Kalice⎯⎯  alice)→⎯

• charlie  {Nalice, Nbob }Kalice⎯⎯  alice →⎯

• alice   { Nbob }Kchar⎯⎯  charlie→⎯

• charlie  {Nbob }Kbob⎯⎯  bob→⎯



  

What's wrong?

• What’s wrong with the protocol?

• Bob wrongly believes that he is communicating with Alice.

• Problem is in the second message specification: 
– 2: B A: {NA ,NB}KA →

• instantiation in the failed run:
– bob (charlie) ⎯⎯ {Nalice, Nbob }Kalice  alice →⎯

• Repair: specification 2: B A: {B,NA ,NB}KA→
– bob ⎯⎯ {bob, Nalice, Nbob }Kalice  alice→⎯



  

The problem is solved

• Trying the same attack:

• alice ⎯⎯ { alice, Nalice }Kchar  charlie⎯

• charlie ⎯⎯ { alice, Nalice }Kbob  bob⎯

• bob  {bob, Nalice, Nbob }Kalice  alice⎯⎯ ⎯

• charlie  {bob, Nalice, Nbob }Kalice  alice⎯⎯ ⎯

BUT: Alice expects an answer from Charlie (and not from 
Bob).



  

But this is an ad-hoc solution

• General solution:
– Encode problem of a security protocol 

analysis as a problem in a logic
– Apply a theorem prover for the logic to the 

problem

• Challenge: develop specialized 
logics,programs and/or (meta-)theories for 
the security analysis of distributed protocols 



  

Challenge in detail

• Formal methods can do the analysis of a finite state problem 
(as we saw at the beginning)

• However, distributed protocols have infinitely many states:
– arbitrary number of principals 

– arbitrary number of protocol runs 

– arbitrary size of messages (generated by the attacker)

• How to handle it 
– restrict number of principals 

– restrict number of protocol runs

– combine different states into a single state by some criterion



  

Relevant research: OFMC

• Lazy and intelligent enumeration of the search 
space
– Organize the search space as a tree.
– Each node is a trace of the protocol and 

continues the trace of the predecessor node.

• Based on D.Basins‘s work on Lazy Infinite-
State Analysis of Security Protocols (1999)

• Part of the AVISPA-toolset (www.avispa-
project.org)



  

Modeling the protocol

• Enumeration of all possible traces (shortest first) using protocol rules and checking the 
results wrt. to insecure states

• Attacker is the network: all messages are sent or received via the attacker

• Rules of the form: 

– msg(m1) AND state(m2) AND N1 -> state(m3) AND msg(m4 ) AND P2

• representing positive (P1, P2) and negative (N1) facts concerning the attacker

– Examples: „intruder knows NA“, „M is secret and only known to A“ , „A has not seen the 
message NB“

• and actual states of principals (state(m))

–  Examples: state(roleA, step0, A, B), state(roleB, step2, A, B, NA, NB),

• Application of rules is checked via matching of messages and facts



  

Modeling the success

• Definition of attack-condition:

• condition under which an attack is successful 

• Syntactically, has the form of the left hand side of a rule:

• ar = msg(m1).state(m2).P1 .N1 ... 
– Example: secret(M, {A, B} ), i_knows(M), : secret(M, i) 

• State S is a successful attack iff ar is „applicable“ in S.

• Protocol is secure iff for all reachable states S and all attack 
conditions ar: ar is not „applicable“ in S.



  

Other approaches

• Strand objects
– Framework on security protocols

• exploring the structure of a protocol,
• exploring the possible combination of local runs (at the principles) of a protocol to a 

common protocol
– Based on the Dolev-Yao model
– Developed by: Joshua Guttman, Jonathan C. Herzog, F. Javier Thayer (1998)
– Implemented (partly) in the Athena – system

• Inductive theorem proving
– Modeling security protocols in an expressive, universal logic (HO-logic)
– Messages and protocol traces as abstract data types
– Modeling the knowledge of principals and attacker as functions on message 

lists (that the principal has seen before)
– Pioneered by L. Paulson using Isabelle (later: other proof tools like Coq, VSE, 

etc)
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