Lesson 12 - Introduction to Web
Service Security

Service Oriented Architectures Security
Module 2 - Web Service Security

Unit 1 — Auxiliary Protocols

Ernesto Damiani

Universita di Milano

Web Services Security Standards

[NGURANCE >

AT B IDEA! WHY WOULD ANYONE
AT & Duv® BN hH%UuEJMFW Wpﬁﬁ@ﬁ
rre

\

a
i 1 —
L OHEEL Urevme il Preey Syraiaomss

Security Standards Overview

High Level SAML, XACML, WS-Trust, ...
Do WS-Security
<
—
<
® SOAP
wn
A}
Q
@ XML
- HTTPS
= HTTP, IMS, SMTP
@ TLS/SSL
o

TCP/IP

Security Standards Stack

WS-Authorization
XACML
WS-SecurityPolicy
WS-SecureConversation XKMS
WS-Federation
SAML
WS-Trust

WS-Security

SOAP

Main Security Specifications

e XML Signature (XMLDSIG)

- Message Integrity and Sender/Receiver Identification

e XML Encryption (XMLENC)
- Message Confidentiality

o WS-Security (WSS)
— Securing SOAP Messages

e SAML

— Interoperable security metadata exchange

e XACML

— Access Control

Other Security Specifications

e WS-Trust and WS-Federation

— Federating multiple security domains
e WS-SecureConversation

— Securing multiple message exchanges
e WS-SecurityPolicy

e Describing what security features are supported or needed
by a Web service

e XrML
— Digital Rights Management
e XKMS

— Key Management and Distribution

XML Signature

XML Signature Overview (1)

e Goals:

- ensure integrity of XML messages;
— identify their source/destination
— ensure non-repudiation

e XML signature prescribes how to compute, store
and verify the digital signature of:
— entire XML documents

— parts of XML documents

- “anything that can be referenced from an URL", this
includes non-XML objects, such as Images.

XML Signature Overview (2)

e Complex and flexible standard:

— It is possible to apply multiple signatures over the same
XML content

— Supports a variety of codes and authentication protocols

e Joint W3C/IETF standard, August 2001

XML Signature Structure

<Signature>
<SighedInfo>
(CcanonicalizationMethod)
(signaturemMethod)
(<rReference (URI)?>
(Transforms)?
(DigestMethod)
(Digestvalue)
</Reference>)+ o
</SignedInfo>
(signaturevalue)
(KeyInfo)? o
(object)*
</Signature>

Reference to what
has been signed

Hash of the reference

| The actual signature

Key used to verify
the signature

XML Signature Simplified Example

<Signature>
<SighedInfo>
<Reference URI="http://www.google.com”/>
</S1gnedInfo>
<Signaturevalue>Base-64 encoded </Signaturevalue>
<KeyInfo>..</KeyInfo>
</Signature>

Security Standards Stack (1)

e Reference Generation

1. Dereference the <Reference URL> to access the XML
content that needs to be signed

2. Apply the Transforms

3. Compute the <DigestValue> applying the
<DigestMethod> to the transformed content

4. Store the result in the <Reference> element

Security Standards Stack (2)

e Signature Generation

1. Create the <SignedInfo> element
2. Transform it to canonical form

3. Compute the <SignatureValue> applying a
<SignatureMethod>

4. Bundle it all together with the <KeyInfo> and <Object>
elements

e Note: what is actually signed is the <Reference>,
which contains a digest (hash) of the original
content, which is only indirectly signed.

Validating the signature (1)

e Reference Validation

1. Dereference the <Reference URL> to access the XML
content that needs to be validated against the digest

2. Apply the same Transforms
3. Compute a hash using the same <DigestMethod>

4. Compare the <DigestValue> with the result.

Validating the signature (2)

e Signature Validation

Canonicalize the <SignedInfo> element

Get the Key following the <KeyInfo> element
Compute the hash with the <SignatureMethod>
Compare it with the <SignatureValue>

:wa\JI—L

XML Signature Position

e Enveloping Signature: the signature wraps the
sighed element

e Enveloped Signature: the signature is contained
inside the signed element

e Detached Signature: the signature refers to a
separate element (inside or outside the document)

<Signature> <XML> <XML>
<Reference>

<Signature>ll <Signature>x"'-.,|
<XML> <Reference> <Reference>

<Reference> Element

e The reference element points to the resource that is
being digitally signed (URI attribute)

e There must be at least one Reference element (but
more are possible in the same signature)

e Examples:

— Hosts An element of the same document
URI="#CustomerInformation”

A\\W/4

— The root of the container document URI=

- An external XML document
URI="http://www.swisscom.ch/order.xml”

- A fragment of an external document
URI="http://www.swisscom.ch/order.xml#Total”

— An external non-XML resource
URI="http://www.swisscom.ch/order.pdf”

<Transformation> Element (1)

e A Reference element contains a set of transform
elements, which are applied in a pipelined fashion to
the content of the referenced resource

e The same transformations (in the same order)
should be used when generating and validating a
digest

<Transformation> Element (2)

e Standard Transforms:

— Canonicalization
— Enveloped Signature Transform
— Decrypt Transform

e Optional Transforms:

— Base-64
— XPath Filtering
— XSLT Transform

Canonicalization (C14N)

The problem

e Sighatures are sensitive to single bit changes
e XML data can have multiple (and equivalent)
serializations. Examples:

— An XML document from a Windows system will use
CR+LF, but can still be parsed in UNIX

— Whitespace can be represented with TAB
e XML Mismatch between data used by crypto

algorithms (raw bytestream: octets) and the
XML representation (XML Infoset)

Canonicalization (C14N)

The solution

e Give a precise (and standard) procedure for
producing XML “strings” out of XML infosets.

e This procedure is called Canonicalization sensitive
to single bit changes

Canonicalization Example

<7xml version="1.0"7>
<!DOCTYPE doc SYSTEM "doc.dtd">

< PurchaseOrder >

<Customer name = “Swisscom Mobile” />

<Date > 2005 11 22 < /Date> —

<!=-- Time unknown -->

<Items/> —
</ Purchaseorder> N

Original XML Document)

<Purchaseorder> ,Lf”ff

<Customer name="“Swisscom Mobile"”/> / /

<Date> 2005 11 22 </Date> N~

<Items></Items> \
</PurchaseOrder>

Canonical Form

Some XML Canonicalization Rules

BusUTF-8 encoding

Linebreaks are normalized to LF (ASCII #xA)
Character and entity references are replaced

CDATA sections are replaced with their content

XML declaration and DTD definition are removed
<Empty/> elements converted to <Empty></Empty>
Attribute value delimiters are set to double quotes

Superfluous namespace declarations are removed

O ©® N O U A W=

Default attributes are explicity added to elements

10. Namespace declarations are sorted before the attributes
(also sorted)

Enveloped Signature Transform

e This signature is needed in order to sign an element
which is the parent of the <Signature> (Otherwise,
the signature should be used as input to compute
itself, which makes it impossible to compute)

e This transform simply removes the <Signature>
element from the document

<XML> <XML>

Enveloped-Signature >

<Signature> Transform

<Reference>
=
<Transform=

Describing and storing the signature

e These elements describe how a signature was
computed and store its value in encoded format:

— The <DigestValue> contains the Base-64 encoded value
of the digest

— The <SignatureValue> contains the Base-64 encoded
value resulting from encrypting the digest of the
<Signaturelnfo> element with the key described in the
<KeyInfo>

— The <DigestMethod> describes the algorithm used to
compute the <DigestValue> (e.g., SHA1)

- The <SignatureMethod> describes how the
<SignatureValue> was computed (e.g., RSA-SHA1)
using the key

<KeyInfo> element

e The <KeyInfo> provides information about the key
used to validate the <SignatureValue>

e It is quite flexible:

- The element can be omitted (The parties exchanging the
message agree on the key using an out-of-band
mechanism)

— Key is embedded in the message
- Key is referenced from the message

— It supports several kinds of Keys used with different
cryptographic standards:

= TheDSA/RSA
= X.509 certificates
= PGP

e The same element is used in XML Encryption

XML Signature and Security

e XML Signature targets these security aspects:

1. Integrity of the message content/external resource:
= Reference validation

2. Integrity of the signature
= Signature validation
3. Identity of the source of the document

= Signature validation

= Warning: only if using a <SignatureMethod> based on
public/private key

e What you see is what you sign:

- Transforms modify and filter the data before it is signed,
so they should be used carefully

XML Encryption

/ {:'*-5' /
s

" - .
-

| wom] §
eenm|l| Sei T (6] Btinn

YOUR SECURITY % SPEND THE REST OF I
SOFTWARE IS OUT YOUR NATURAL LIFE z YOUR IDENTITY, DRAIN
OF DATE. .. TRYING TO FIGURE *!; YOUR BANK ACCOUNTS

S/ OUT HOW) TO Up- = AND DESTROY YOUR

; UH-OH. |, GRADE IT7 g

| 8 {:' — ",.'i E

§ /] RR

s &

'l:! a

: !

© Scott Adams, Inc./Dist. by UFS, Inc.

XML Encryption Overview

e Goal: ensure confidentiality of XML Messages

e Solution: obfuscate parts of an XML document,
while maintaining a correct XML syntax

e Features:
- End to End (Multi-hop scenario)
— Full or Partial encryption
— Flexibility: different parts of a message can be read by
different parties using different keys
e Challenges and problems:
— Is an encrypted XML document still XML?
- How to validate an encrypted XML document with respect to
its XML schema?

e \W3C Recommendation, December 2002

XML Encryption vs. XML Signature

e XML Encryption complementary to XML Signature

e Different purposes:

— XML Encryption = Confidentiality
— XML Signature = Integrity and Identity

e Some overlap in the specifications (e.g., KeyInfo>)

e Difference:

— XML Encryption. Encrypted XML is replaced by the
<EncryptedData> element

— XML Signature: Signed XML is referenced from the
<Signature> element

e Warning: Encrypted data which is not signed can
still be tampered with!

XML Encryption Scenario

« Guarantee confidentiality at the SOAP message
level (Selected parties may access different
message parts)

Client Broker Service

Encrypted XML
> —> Encrypted XML
Encrypted XML

> | Encrypted XML
SOAP SOAP _
< HTTPS \< HTTPS >
\ Secure / Secure
Point to Point Point to Point

Transport Transport

XML Encryption Example

<Employee> Original XML Document
<|D>»>222-654-456</1D>
<Name>Markus Bach</Name>
<Salary currency="CHF">100000</5alary>

</Employee>

<Employee> Encrypted XML Document
<|D><EncryptedData>...</EncryptedData></ID>

<Name>Markus Bach</Name>
<EncryptedData>...</EncryptedData>
</Employee>

XML Encryption Structure

<EncryptedData Id? Type? MimeType? Encoding?>
<CipherData>

<Ciphervalue>?]

<CipherrReference URI?}

</CipherData> Reference to

Encrypted Value

<KeyInfo>

<EncryptedKey> Encrypted Value

<AgreementMethod>

<ds:¥> .
</KeyInfo> Key Information
<EncryptionMethod/> (extends Keylinfo of
<EncryptionProperties>. Digital Signature)

</EncryptedData> .

Additional Metadata

<EncryptedData> Element (1)

e The <EncryptedData> container tag replaces the
document elements that are sent in encrypted form

e Together with the encrypted elements
<CipherData>, it contains metadata and attributes
describing how to decrypt them
<EncryptionMethod>, <KeyInfo>

o Attributes:

- T?/pe = (element | content). Determine whether the
B aintext is an entire XML element or only the content has
een encrypted.

— MimeType. Optional attribute describing the type of the
encrypted non-XML element

- Encoding. How the non-XML has been encoded

<EncryptedData> Element (2)

e The <EncryptionMethod> specifies which algorithm
has been used to encrypt the data. Currently
supported are:

— Triple-DES

— AES (Advanced Encryption Standard) with 128, 256
(required) or 192 (optional) bit key

N b:;":IN E;:MP‘
a4 v
*ee” Re ¢ 944

*2
*o

