
Service Oriented Architectures Security

Module 2 - Web Service Security

Unit 1 – Auxiliary Protocols

Ernesto Damiani

Università di Milano

Lesson 12 – Introduction to Web
Service Security

Web Services Security Standards

Security Standards Overview

Security Standards Stack

Main Security Specifications

• XML Signature (XMLDSIG)

– Message Integrity and Sender/Receiver Identification

• XML Encryption (XMLENC)

– Message Confidentiality

• WS-Security (WSS)

– Securing SOAP Messages

• SAML

– Interoperable security metadata exchange

• XACML

– Access Control

Other Security Specifications

• WS-Trust and WS-Federation

– Federating multiple security domains

• WS-SecureConversation

– Securing multiple message exchanges

• WS-SecurityPolicy

• Describing what security features are supported or needed
by a Web service

• XrML

– Digital Rights Management

• XKMS

– Key Management and Distribution

XML Signature

XML Signature Overview (1)

• Goals:

– ensure integrity of XML messages;

– identify their source/destination

– ensure non-repudiation

• XML signature prescribes how to compute, store

and verify the digital signature of:

– entire XML documents

– parts of XML documents

– “anything that can be referenced from an URL”, this
includes non-XML objects, such as Images.

XML Signature Overview (2)

• Complex and flexible standard:

– It is possible to apply multiple signatures over the same
XML content

– Supports a variety of codes and authentication protocols

• Joint W3C/IETF standard, August 2001

XML Signature Structure

XML Signature Simplified Example

Security Standards Stack (1)

• Reference Generation

1. Dereference the <Reference URL> to access the XML
content that needs to be signed

2. Apply the Transforms

3. Compute the <DigestValue> applying the
<DigestMethod> to the transformed content

4. Store the result in the <Reference> element

Security Standards Stack (2)

• Signature Generation

1. Create the <SignedInfo> element

2. Transform it to canonical form

3. Compute the <SignatureValue> applying a
<SignatureMethod>

4. Bundle it all together with the <KeyInfo> and <Object>
elements

• Note: what is actually signed is the <Reference>,

which contains a digest (hash) of the original

content, which is only indirectly signed.

Validating the signature (1)

• Reference Validation

1. Dereference the <Reference URL> to access the XML
content that needs to be validated against the digest

2. Apply the same Transforms

3. Compute a hash using the same <DigestMethod>

4. Compare the <DigestValue> with the result.

Validating the signature (2)

• Signature Validation

1. Canonicalize the <SignedInfo> element

2. Get the Key following the <KeyInfo> element

3. Compute the hash with the <SignatureMethod>

4. Compare it with the <SignatureValue>

XML Signature Position

• Enveloping Signature: the signature wraps the

signed element

• Enveloped Signature: the signature is contained

inside the signed element

• Detached Signature: the signature refers to a

separate element (inside or outside the document)

<Reference> Element

• The reference element points to the resource that is

being digitally signed (URI attribute)

• There must be at least one Reference element (but

more are possible in the same signature)

• Examples:

– Hosts An element of the same document
URI=“#CustomerInformation”

– The root of the container document URI=“”

– An external XML document
URI=“http://www.swisscom.ch/order.xml”

– A fragment of an external document
URI=“http://www.swisscom.ch/order.xml#Total”

– An external non-XML resource
URI=“http://www.swisscom.ch/order.pdf”

<Transformation> Element (1)

• A Reference element contains a set of transform

elements, which are applied in a pipelined fashion to

the content of the referenced resource

• The same transformations (in the same order)

should be used when generating and validating a

digest

<Transformation> Element (2)

• Standard Transforms:

– Canonicalization

– Enveloped Signature Transform

– Decrypt Transform

• Optional Transforms:

– Base-64

– XPath Filtering

– XSLT Transform

Canonicalization (C14N)

The problem

• Signatures are sensitive to single bit changes

• XML data can have multiple (and equivalent)
serializations. Examples:

– An XML document from a Windows system will use
CR+LF, but can still be parsed in UNIX

– Whitespace can be represented with TAB

• XML Mismatch between data used by crypto
algorithms (raw bytestream: octets) and the
XML representation (XML Infoset)

Canonicalization (C14N)

The solution

• Give a precise (and standard) procedure for
producing XML “strings” out of XML infosets.

• This procedure is called Canonicalization sensitive
to single bit changes

Canonicalization Example

Some XML Canonicalization Rules

1. BusUTF-8 encoding

2. Linebreaks are normalized to LF (ASCII #xA)

3. Character and entity references are replaced

4. CDATA sections are replaced with their content

5. XML declaration and DTD definition are removed

6. <Empty/> elements converted to <Empty></Empty>

7. Attribute value delimiters are set to double quotes

8. Superfluous namespace declarations are removed

9. Default attributes are explicity added to elements

10.Namespace declarations are sorted before the attributes

(also sorted)

Enveloped Signature Transform

• This signature is needed in order to sign an element

which is the parent of the <Signature> (Otherwise,

the signature should be used as input to compute

itself, which makes it impossible to compute)

• This transform simply removes the <Signature>

element from the document

Describing and storing the signature

• These elements describe how a signature was

computed and store its value in encoded format:

– The <DigestValue> contains the Base-64 encoded value
of the digest

– The <SignatureValue> contains the Base-64 encoded
value resulting from encrypting the digest of the
<SignatureInfo> element with the key described in the
<KeyInfo>

– The <DigestMethod> describes the algorithm used to
compute the <DigestValue> (e.g., SHA1)

– The <SignatureMethod> describes how the
<SignatureValue> was computed (e.g., RSA-SHA1)
using the key

<KeyInfo> element

• The <KeyInfo> provides information about the key

used to validate the <SignatureValue>

• It is quite flexible:

– The element can be omitted (The parties exchanging the
message agree on the key using an out-of-band
mechanism)

– Key is embedded in the message

– Key is referenced from the message

– It supports several kinds of Keys used with different
cryptographic standards:

 TheDSA/RSA

 X.509 certificates

 PGP

• The same element is used in XML Encryption

XML Signature and Security

• XML Signature targets these security aspects:

1. Integrity of the message content/external resource:

 Reference validation

2. Integrity of the signature

 Signature validation

3. Identity of the source of the document

 Signature validation

 Warning: only if using a <SignatureMethod> based on
public/private key

• What you see is what you sign:

– Transforms modify and filter the data before it is signed,
so they should be used carefully

XML Encryption

XML Encryption Overview

• Goal: ensure confidentiality of XML Messages

• Solution: obfuscate parts of an XML document,
while maintaining a correct XML syntax

• Features:
– End to End (Multi-hop scenario)

– Full or Partial encryption

– Flexibility: different parts of a message can be read by
different parties using different keys

• Challenges and problems:
– Is an encrypted XML document still XML?

– How to validate an encrypted XML document with respect to
its XML schema?

• W3C Recommendation, December 2002

XML Encryption vs. XML Signature

• XML Encryption complementary to XML Signature

• Different purposes:

– XML Encryption = Confidentiality

– XML Signature = Integrity and Identity

• Some overlap in the specifications (e.g., KeyInfo>)

• Difference:

– XML Encryption. Encrypted XML is replaced by the
<EncryptedData> element

– XML Signature: Signed XML is referenced from the
<Signature> element

• Warning: Encrypted data which is not signed can

still be tampered with!

XML Encryption Scenario

• Guarantee confidentiality at the SOAP message

level (Selected parties may access different

message parts)

XML Encryption Example

XML Encryption Structure

<EncryptedData> Element (1)

• The <EncryptedData> container tag replaces the
document elements that are sent in encrypted form

• Together with the encrypted elements
<CipherData>, it contains metadata and attributes
describing how to decrypt them
<EncryptionMethod>,<KeyInfo>

• Attributes:
– Type = (element | content). Determine whether the

plaintext is an entire XML element or only the content has
been encrypted.

– MimeType. Optional attribute describing the type of the
encrypted non-XML element

– Encoding. How the non-XML has been encoded

<EncryptedData> Element (2)

• The <EncryptionMethod> specifies which algorithm

has been used to encrypt the data. Currently

supported are:

– Triple-DES

– AES (Advanced Encryption Standard) with 128, 256
(required) or 192 (optional) bit key

FINE

