
Service Oriented Architectures Security

Module 2 - WS Security

Unit 1 – Auxiliary Protocols

Ernesto Damiani

Università di Milano

Lesson 13 – Securing Web Services
(WS-Security, SAML)

<CipherData> element

• This element stores or refers to the encrypted data:

– <CipherValue> container for binary encrypted data

– <CipherReference> reference to an URL of the encrypted
data. Can include a pipeline of Transform elements like XML
Signature, that specify how to filter the referenced data
before it is decrypted

<KeyInfo> element (1)

• Describe the key used to encrypt the data

• Whereas in XML Signature, this is usually a public

key, in XML Encryption this is usually a shared

encryption key

• In general, public keys can be safely included with

a message. Instead, it is not safe to embed shared

keys!!

<KeyInfo> element (2)

• XML Encryption provides several mechanisms to

agree/retrieve the decryption key:

– Key is omitted (out-of-band)

– Key is referenced: <KeyName> <RetrievalMethod>.
These elements are used to identify which of the secret
keys (shared between the parties) should be used and
how the shared key should be retrieved. With them, the
same key can be used to encrypt different parts of the
same document.

– Key is regenerated:<AgreementMethod>

– Key is included in encrypted form: <EncryptedKey>

Sharing keys within the same message

• It is possible to reuse the same <EncryptedKey>

element to decrypt multiple <EncryptedData>

elements

Using XML Encryption (1)

Encryption Process

1. Choose an algorithm (3DES, AES)

2. Choose a key and define how to represent it

– Key is generated or looked up

– Key is omitted from the message

– Key is described in the <KeyInfo> section

3. Serialize the XML data to a byte stream

– Element (with tags)

– Content (tags omitted)

Using XML Encryption (2)

4. Encrypt the byte stream

5. Encode the result in the <CipherData> element

6. Build the <EncryptedData> element with the

information required to decrypt it

Using XML Encryption (3)

Decryption Process

1. Determine algorithm (3DES, AES)

2. Determine key

– Key and algorithm could be agreed upon in advance

– If Key is encrypted, decrypt it (this is recursive)

3. Decrypt key

– CipherValue (decode the embedded Base-64 byte stream)

– CipherReference (dereference the URI and apply the
specified Transforms before the data is decrypted)

Using XML Encryption (4)

4. Process XML content: parse the serialized XML

and substitute the original <EncryptedData>

element with the decrypted XML element (or

content)

5. Process non-XML content described by the

MimeType and Encoding attributes of the

<EncryptedData> element

Using XML Encryption together with XML
Signature

XML Signature and XML Encryption

• Message Confidentiality and Integrity are both

important requirements of a secure message

exchange

• XML Signature and XML Encryption have been

designed to work together to achieve this

• Problem: in which order should they be applied?

Sign or encrypt first?

– Encryption metadata is sent in clear. If not signed,
encrypted data/metadata could be corrupted by an attacker
to prevent decryption of the message.

– If signatures are sent in the clear, attackers could strip
them from a message or replace them entirely without the
recipient noticing.

Example 1: Encrypt the signed data (1)

Example 1: Encrypt the signed data (2)

• The signature is hidden inside the encrypted XML

• The order is clear: 1. Decrypt; 2. Verify signature

• Problem: the Encryption metadata is not protected

with a signature

Example 2: Sign the encrypted data

Decrypt Transform in XML Signature (1)

• When a message is received, it may not be clear in

which order signature validation and decryption

should be applied

• To make the order of encryption and signature

explicit, the Decrypt transform has been added to the

XML signature standard

• This transform is used to distinguish whether the

signature applies to the <EncryptedData> or to the

decrypted data.

Decrypt Transform in XML Signature (2)

• The XML Signature processor will decrypt all

referenced <EncryptedData> elements except the

one identified by the <Except> element

• With this solution, default processing always applies

decryption before signature verification; unless such

transform is specified by the sender

WS-Security

WS-Security overview (1)

• The WS-Security standard applies XML security

(XML Encryption and XML Signature) to implement

secure SOAP message exchange across multiple and

independent trust domains

• Goals: security at the message level (end-to-end)

• Solution: apply encryption and signatures within a

SOAP message independent of the transport. Parts of

the message body can be encrypted, signatures are

stored in the header

WS-Security overview (2)

• WS-Security features support for:

– multiple signature technologies

– multiple encryption technologies

– multiple security token formats

• OASIS standard, April 2004

Message Security vs. Transport Security (1)

Message Security

• Disadvantages

– Immature standards only partially supported by existing
tools

– Securing XML is complicated

• Advantages

– Different parts of a message can be secured in different
ways.

– Asymmetric: different security mechanisms can be applied
to request and response

– Self-protecting messages (Transport independent)

Message Security vs. Transport Security (2)

Transport Security

• Disadvantages

– Point 2 Point: the complete message is in clear after each
hop

– Symmetric: request and response messages must use
same security properties

– Transport specific

• Advantages

– Widely available, mature technologies (SSL, TLS, HTTPS)

– Understood by most system administrators

Protecting SOAP messages

• Security Threats to a SOAP message:

– a message could be read by an attacker

– a message could be modified by an attacker

– a message could be sent by an attacker

• To address these threats, WS-Security applies a

combination of:

1. encryption (Ensure the confidentiality of the message)

2. signatures (Verify the origin and the integrity of a message)

3. security Tokens (Authorize the processing of the message
based on the credentials associated with the message)

• Messages with invalid signatures and incorrect or

missing tokens are rejected

A secure SOAP message

Security Tokens (1)

• WS-Security supports a variety of authentication

and authorization mechanisms by including the

corresponding tokens into the Security header of

the message:

– Simple Tokens

 Username/Clear Password

 Username/Password Digest

– Binary Tokens

 X.509 certificates

 Kerberos

Security Tokens (2)

– XML Tokens

 SAML assertions

 XrML (eXtensible Rights Markup Language)

 XCBF (XML Common Biometric Format)

– Token reference

 WS-SecureConversation

Security Tokens and Identity (1)

• A security token can be used to claim the identity of

the source of a message

• Username/PasswordText is the simplest token used

to convey identify but it is also not secure (SOAP

messages should not contain passwords in clear)

• Username/PasswordDigest deals with this problem:

Security Tokens and Identity (2)

• To produce the digest, the password is hashed

together with a timestamp and a nonce

– Protection against reply attacks

– The server must store the plain-text password

Security Tokens and Authentication (1)

• A security token can be signed to authenticate a

claim made by the sender of the message

• Signatures associated with tokens can be verified

by the recipient to authenticate the identity of the

sender

Security Tokens and Authentication (2)

• Example: X509 certificates (public keys) should be

signed in order to provide authentication of the

sender (proof of possession of the corresponding

private key)

Federated Security Domains (1)

• Different systems may belong to different security

domains that use different security mechanisms and

policies

• Although SOAP enables interoperability between

these systems, the translation of security metadata

between different domains remains a problem

• WS-Security is a first step towards providing

standardized syntax and semantics for representing

security information

Federated Security Domains (2)

• WS-Trust adds a standard interface for a security

token service provider used to:

– Issue and Renew Security Tokens to be attached to a
SOAP message with WS-Security

– Validate Security Tokens from a different domain

– Translate Security Tokens across domains that share a
trust relationship (WS-Federation)

Putting it all together

WS-SecureConversation (1)

• The security handshake involving the creation of

tokens and their validation may impose a high

performance overhead

• WS-SecureConversation defines a shared

security context to be reused across the exchange

of multiple messages

– The same combination of security credentials
(authentication, authorization) and encryption keys can
be reused

WS-SecureConversation (2)

• Once the conversation is established, the

requester and the service share a secret:

– the client does not have to include the security metadata
for each message

– the service does not have to revalidate the same tokens
for each message

• This is implemented using a special token:

<SecurityContextToken>

SAML (Security Assertion Markup

Language)

SAML overview (1)

• The Security Assertion Markup Language (SAML)

predates WS-Security, as it was standardized at

OASIS in November 2002 (v1.0), August 2003

(v1.1), March 2005 (v2.0)

• Goal: enable loosely coupled identity management

• Solution: define a format and protocol for

interoperable exchange of security information (or

assertions) about subjects (human users or

computer systems) that have to be identified within

a certain security domain

SAML overview (2)

• Use cases supported by standard profiles:

– Single Sign On (SSO) and Single Logout

– Identity Federation

– Privacy-preserving identification

– Securing Web service messages: SAML assertions are used
as WS-Security tokens.

• SAML also defines protocol for clients to request

assertions from “SAML authorities” and for services

to verify assertions with trusted “SAML authorities”

Portable and Federated Identity (1)

• SAML enables Single Sign On and the transfer of

identity credentials across different trust domains

• Credentials established at the initial service, where

the user is authenticated, are forwarded to other

services that can trust them

Portable and Federated Identity (2)

• This is done without a centralized authentication

registry that should be shared and trusted by

everyone (example: Project Liberty)

SAML concepts (1)

• SAML uses XML to describe security assertions that

can be understood across security domains

• SAML defines a standard protocol to generate,

exchange and process assertions

• SAML bindings map how a SAML document is

transported:

– SAML requires HTTPS

– SAML can be used inside SOAP messages to represent WS-
Security tokens.

SAML concepts (2)

• SAML Assertions and the corresponding protocols

are used for:

– Authentication: verification of identity credentials

– Attributes: information associated with subjects (e.g., the
user address or it’s the current balance status of the
account)

– Authorization: grant (or deny) access to a resource for an
authenticated subject. (As of SAML 2.0, this feature uses
XACML).

– Custom assertions

SAML Assertion Metadata Example

Authentication Assertions (1)

• An Authentication Assertion Statement is

produced by an authentication authority (issuer) to

claim that:

– a subject (with some identification)

– with a certain method (or context class)

– at a certain time

 was successfully identified

Authentication Assertions (2)

• Depending on the method, the authentication

assertion can be trusted with a certain level of

confidence to represent the digital identity of the

subject for some period of time

Authentication Methods (1)

• To describe how a subject identity was

authenticated, SAML 2.0 defines the following

authentication context classes:

– Internet Protocol Address

– UserName/Password over HTTP or HTTPS

– Secure Remote Password

– IP Address and Username/Password

– SSL/TLS Certificate Based Client Authorization

– Kerberos Ticket

– Public Key (X.509, PGP, SPKI, XML Signature)

Authentication Methods (2)

– Telephone Number

– Smartcard: One Factor, Two Factor

– Mobile: One Factor, Two Factor

– Previous Session

– Unspecified

Attribute Assertions

• An authority asserts that the subject is associated

with the specified attributes:

– SAML profiles show how to apply attributes to standardize
access to directories of user attribute information:

 LDAP/X.500

 DCE PAC (Privilege Attribute Certificate)

 XACML (eXtensible Access Control Markup Language)

– Additionally, attributes can model accounting related
information: what is the credit amount left in the account
or the payment status for a user

SAML Protocols

Putting it all together

XACML (eXtensible
Access Control Markup Language)

XACML overview (1)

• Goal: represent access control policies in XML

• Solution: define an XML schema for representing

authorization rules to grant (or refuse) subjects the

access to target resources to perform specific

actions.

• Features:

– fine grained control: targets referenced using URLs

– consistent with and building upon SAML

XACML overview (2)

• Benefits

– interoperability of different security tools (Migration of rules
through import/export)

– uniform way to specify access control policies

– reuse of generic access control service

– enable the consolidation of access control policies across
the enterprise: centralization reduces costs

• OASIS Standard released February 2003 (v1.0),

August 2003 (v1.1) and March 2005 (v2.0)

What is Access Control?

• Authorization is the permission granted to a subject

to perform some action on some target resource

• Rights management tools control whether a subject

is granted the authorization rights

• Access rights can be granted to individual subjects,

but also to groups of subjects (or roles)

XACML Rule Example (Simplified)

XACML architecture

• XACML works together with SAML to implement

an authorization authority

FINE

