
Service Oriented Architectures Security 

 

Module 3 - Resource-oriented services 

 

Unit 1 – REST 

 

Ernesto Damiani 

Università di Milano 

Lesson 14 – SOA with REST (Part I) 



Web Sites (1992) 



WS-* Web Services (2000) 



RESTful Web Services (2007) 



WS-* Web Services (2000) 



Where do Web services come from? 

• Address the problem of enterprise software 

standardization 

• Enterprise Computing Standards for Interoperability 

(WS started 2001) 

• A layered architecture with a variety of messaging, 

description and discovery specifications 

• Do things from the ground up, quickly, in well 

factored, distinct, tightly focused specifications 

• Tools will hide the complexity 



Dealing with Heterogeneity (1) 

• Web Applications 



Dealing with Heterogeneity (2) 

• Enterprise Computing 



Big Web Services (1) 

• High perceived complexity 

• Problematic standardization process 

– Infighting 

– Lack of architectural coherence 

– Fragmentation 

– Design by committee 

– Feature Bloat (Merge of competing specs) 

– Lack of reference implementations 

– Standardization of standards (WS-I) 



Big Web Services (2) 

• Is this starting to look like CORBA? 

• When will Web services interoperability start to 

really work? 

• Do we really have to buy XML appliances to get 

good performance? 



REpresentational State Transfer 

• REST (REepresentational State Transfer) defines 

the architectural style of the Web 

• Its four principles can explain the success and the 

scalability of the HTTP protocol implementing them 

1. Resource Identification through URI 

2. Uniform Interface for all resources: 

 GET (Query the state, idempotent, can be cached) 

 POST (Create a child resource) 

 PUT (Update, transfer a new state) 

 DELETE (Delete a resource) 

3. “Self-Describing” Messages through Meta-Data and 
multiple resource representations 

4. Hyperlinks to define the application state transitions and 
relationships between resources 



RESTful Web Service Example 



Uniform Interface Principle (CRUD 
Example) 



Uniform Resource Identifier 

• Internet Standard for resource naming and 

identification (originally from 1994, revised until 2005) 

• Examples: 

 

 

 

 

• REST does not advocate the use of “nice” URIs 

• In most HTTP stacks URIs (Uniform Resource 

Identifiers) cannot have arbitrary length (4Kb) 



URI Design Guidelines 

• Prefer Nouns to Verbs 

• Keep your URIs short 

• Follow a “positional” parameter passing scheme 

(instead of the key=value&p=v encoding) 

• URI postfixes can be used to specify the content type 

• Do not change URIs 

• Use redirection if you really need to change them 



High REST vs. Low REST 

Best practices differ: 

• High REST 

– Usage of “nice” URIs recommended 

– Full use of the 4 verbs: GET, POST, PUT, and DELETE 

– Responses using Plain Old XML 

• Low REST 

– HTTP GET for idempotent requests, POST for everything 
else 

– Responses in any MIME Type (e.g., XHTML) 

 

 



Resource Representation Formats: 
XML vs. JSON (1) 

XML 

– PO-XML 

– SOAP (WS-*) 

– RSS, ATOM 

• Standard textual syntax for semi-structured data 

• Many tools available: 

– XML Schema, DOM, SAX, XPath, XSLT, XQuery 

• Everyone can parse it (not necessarily understand it) 

• Slow and Verbose 

 



Resource Representation Formats: 
XML vs. JSON (2) 

JSON (JavaScript Object Notation) 

• Wire format introduced for AJAX Web applications 
(Browser-Web Server communication) 

•  Textual syntax for serialization of non-recurrent 
data structures 

•  Supported in most languages (not only JavaScript) 

•  Not extensible (does not need to be) 

•  “JSON has become the X in Ajax” 

 



JSON Example 



REST Strengths (1) 

• Simplicity 

– Uniform interface is immutable (no problem of breaking 
clients) 

• HTTP/POX is ubiquitous (goes through firewalls) 

• Stateless/Synchronous interaction 

• Proven scalability 

– “after all the Web works”, caching, clustered server farms 
for QoS 



REST Strengths (2) 

• Perceived ease of adoption (light infrastructure) 

– just need a browser to get started - no need to buy WS-* 
middleware 

• Grassroots approach 

• Leveraged by all major Web 2.0 applications 

– 85% clients prefer Amazon RESTful API  

– Google does no longer support its SOAP/WSDL API 



REST Weaknesses (1) 

• Confusion (high REST vs. low REST) 

– Is it really 4 verbs? (HTTP 1.1. has 8 verbs: HEAD, GET, 
POST, PUT, DELETE, TRACE, OPTIONS, and CONNECT) 

• Mapping REST-style synchronous semantics on top 

of back end systems creates design mismatches 

(when they are based on asynchronous messaging 

or event driven interaction) 

• Cannot deliver enterprise-style “-ilities” beyond 

HTTP/SSL  



REST Weaknesses (2) 

• Challenging to identify and locate resources 

appropriately in all applications 

• Apparent lack of standards (other than URI, HTTP, 

XML, MIME, HTML) 

• Semantics/Syntax description very informal 

(user/human oriented) 

 



RESTful Web Services Design 
Methodology (1) 

1.  Identify resources to be exposed as services 

(e.g., yearly risk report, book catalog, purchase 

order, open bugs, polls and votes) 

2.  Define “nice” URLs to address them 

3.  Understand what it means to do a GET, POST, 

PUT, DELETE on a given resource URI 

4.  Design and document resource representations 

 



RESTful Web Services Design 
Methodology (2) 

5. Model relationships (e.g., containment, reference, 

state transitions) between resources with 

hyperlinks that can be followed to get more 

details (or perform state transitions) 

6. Implement and deploy on Web server 

 

 



RESTful Web Services Design 
Methodology (3) 

7. Test with a Web browser 

 



Simple Doodle API Example (1) 

• Creating a poll (transfer the state of a new poll on 

the Doodle service) 

 

 

 

 

 

• Reading a poll (transfer the state of the poll from 

the Doodle service) 



Simple Doodle API Example (2) 

• Participating in a poll by creating a new vote sub-

resource 

 

 

 



Simple Doodle API Example (3) 

• Existing votes can be updated (access control 

headers not shown) 

 

 

 



Simple Doodle API Example (4) 

• Polls can be deleted once a decision has been 

made 

 

 

 

FINE 


