
Service Oriented Architectures Security

Module 1 - Basic technologies

Unit 1 – Introduction

Ernesto Damiani

Università di Milano

Lesson 22 – XACML

Pag. 1

XACML - Topics

Goals

Approach

Examples

Summary

Purdue University Pag. 2

Goals

Define a core XML schema for
representing authorization and
entitlement policies

Target - any object - referenced using
XML

Fine access control grained control

Access control based on subject and
object attributes

Access control based on the object
contents; if the object is not an XML
document, the object attributes can be
used

Consistent with and building upon SAML

Purdue University Pag. 3

XACML – Key Aspects

General-purpose authorization policy model and
XML-based specification language

XACML is independent of SAML specification

Triple-based policy syntax: <Object, Subject,
Action>

Negative authorization is supported

Input/output to the XACML policy processor is
clearly defined as XACML context data structure

Input data is referred by XACML-specific attribute
designator as well as XPath expression

Extension points: function, identifier, data type,
rule-combining algorithm, policy-combining
algorithm, etc.

A policy consists of multiple rules

A set of policies is combined by a higher level policy
(PolicySet element)

Pag. 4

XACML Protocol

Pag. 5

Policy

Enforcement

Point (PEP)
Policy

Decision

Point (PDP)

Policy

Access

Point (PAP)

Policy

Information

Point (PIP)

XACML

Request/

Response

XACML Protocol

When a client makes a resource request upon a
server, the PEP is charged with AC

In order to enforce AC policies, the PEP will
formalize the attributes describing the
requester at the PIP and delegate the
authorization decision to the PDP

Applicable policies are located in a policy store,
managed by the PAP, and evaluated at the
PDP, which then returns the authorization
decision

Using this information, the PEP can deliver the
appropriate response to the client

Pag. 6

XACML Protocol

1. The Policy Administration Point (PAP)
creates security policies and stores these
policies in the appropriate repository.

2. The Policy Enforcement Point (PEP)
performs access control by making
decision requests and enforcing
authorization decisions.

3. The Policy Information Point (PIP) serves
as the source of attribute values, or the
data required for policy evaluation.

4. The Policy Decision Point (PDP) evaluates
the applicable policy and renders an
authorization decision.

Note: The PEP and PDP might both be
contained within the same application, or
might be distributed across different
servers

Pag. 7

XACML Protocol

XACML Request

• Subject

• Object

• Action

XACML Response

• Permit

• Permit with Obligations

• Deny

• NotApplicable (the PDP cannot locate a policy whose
target matches the required resource)

• Indeterminate (an error occurred or some required
value was missing)

 Pag. 8

Data Flow Model

PEP

context

handler

8. request

context

PIP

4. attribute

query

9. response

context

1. policy

6. attribute

environment

resource

subjects

5b. envrionment

attributes

PAP

obligations

service
11. obligations

PDP

access

requester
2. access request

7. resource

3. request10. response

5c. resource

attributes

5a. subject

attributes

 Pag. 9

Data Flow Model

1. PAPs write policies and policy sets and make them
available to the PDP. These policies or policy sets
represent the complete policy for a specified target

2. The access requester sends a request for access to the
PEP

3. The PEP sends the request for access to the context
handler in its native request format, optionally including
attributes of the subjects, resource, action and
environment

4. The context handler constructs an XACML request context
and send it to the PDP

5. The PDP requests any additional subject, resource,
action, and environment attributes from the context
handler

6. The context handler requests the attributes from a PIP

7. The PIP obtains the requested attributes

8. The PIP returns the requested attributes to the context
handler

9. Optionally, the context handler includes the resource in
the context Pag. 10

Data Flow Model

10. The context handler sends the requested attributes
and (optionally) the resource to the PDP. The PDP
evaluates the policy

11. The PDP returns the response context (including
the authorization decision) to the context handler

12. The context handler translates the response
context to the native response format of the PEP.
The context handler returns the response to the
PEP

13. The PEP fulfills the obligations

14. (Not shown) If access is permitted, then the PEP
permits access to the resource; otherwise, it
denies access

Purdue University Pag. 11

XACML Schemas

Pag. 12

Policy Schema Request Schema Response Schema

PolicySet (Combining Alg)

 Policy* (Combining Alg)

 Rule* (Effect)

 Target

 Subject*

 Resource*

 Action*

 Environment

 Effect

 Condition

 Obbligation*

Request

 Subject

 Resource

 Action

Response

 Decision

 Obligation*

http://www.oasis-open.org/committees/download.php/915/cs-xacml-schema-policy-01.xsd
http://www.oasis-open.org/committees/download.php/919/cs-xacml-schema-context-01.xsd
http://www.oasis-open.org/committees/download.php/919/cs-xacml-schema-context-01.xsd

XACML Schemas

Pag. 13

Policy Schema Request Schema Response Schema

PolicySet (Combining Alg)

 Policy* (Combining Alg)

 Rule* (Effect)

 Subject*

 Resource*

 Action

 Condition*

 Obligation*

Request

 Subject

 Resource

 Action

Response

 Decision

 Obligation*

http://www.oasis-open.org/committees/download.php/915/cs-xacml-schema-policy-01.xsd
http://www.oasis-open.org/committees/download.php/919/cs-xacml-schema-context-01.xsd
http://www.oasis-open.org/committees/download.php/919/cs-xacml-schema-context-01.xsd

Policies and PolicySet

The key top-level element is the <PolicySet> which aggregates other
<PolicySet> elements or <Policy> elements

The <Policy> element is composed principally of <Target>,
<RuleSet> and <Obligation> elements and is evaluated at the
PDP to yield and access decision.

Since multiple policies may be found applicable to an access
decision, (and since a single policy can contain multiple Rules)
Combining Algorithms are used to reconcile multiple outcomes
into a single decision

The <Target> element is used to associate a requested resource with
an applicable Policy. It contains conditions that the requesting
Subject, Resource, or Action must meet for a Policy Set, Policy, or
Rule to be applicable to the resource.

The Target includes a build-in scheme for efficient indexing/lookup
of Policies.

Rules provide the conditions which test the relevant attributes within
a Policy. Any number of Rule elements may be used each of which
generates a true or false outcome. Combining these outcomes
yields a single decision for the Policy, which may be "Permit",
"Deny", "Indeterminate", or a "NotApplicable" decision.

Purdue University Pag. 14

Policies and Policy Sets

Policy

• Smallest element PDP can evaluate

• Contains: Description, Defaults, Target, Rules, Obligations,
Rule Combining Algorithm

Policy Set

• Allows Policies and Policy Sets to be combined

• Use not required

• Contains: Description, Defaults, Target, Policies, Policy
Sets, Policy References, Policy Set References, Obligations,
Policy Combining Algorithm

Combining Algorithms: Deny-overrides, Permit-
overrides, First-applicable, Only-one-
applicable

Pag. 15

Overview of the Policy Element

Pag. 16

<Rule RuleId=“R2”

 Effect=“Deny”>

 <Target>

 <Resources>

 <Subjects>

 <Actions>

 <Condition>

</Rule>

<Policy>

 <Target>

 <Resources>

 <Subjects>

 <Actions>

 <RuleSet ruleCombiningAlgId = “DenyOverrides”>

 <Rule ruleId=“R1”>

 <Rule ruleId=“R2”>

 …

 <Obligations>

 <RuleSet>

</Policy>

<Rule RuleId=“R1”

 Effect=“Permit”>

 <Target>

 <Resources>

 <Subjects>

 <Actions>

 <Condition>

</Rule>

Combining Algorithms

• Policy & Rule Combining algorithms

 Permit Overrides:

 If a single rule permits a request, irrespective of
the other rules, the result of the PDP is Permit

 Deny Overrides:

 If a single rule denies a request, irrespective
 of the other rules, the result of the PDP is deny.

 First Applicable:

 The first applicable rule that satisfies the request
is the result of the PDP

 Only-one-applicable:

 If there are two rules with different effects for
 the same request, the result is indeterminate

Pag. 17

Rules

Smallest unit of administration, cannot be
evaluated alone

Elements
• Description – documentation

• Target – select applicable rules

• Condition – boolean decision function

• Effect – either “Permit” or “Deny”

Results
• If condition is true, return Effect value

• If not, return NotApplicable

• If error or missing data return Indeterminate

–Plus status code

Pag. 18

Target

Designed to efficiently find the policies that
apply to a request

Makes it feasible to have very complex
Conditions

Attributes of Subjects, Resources and Actions

Matches against value, using match function

• Regular expression

• RFC822 (email) name

• X.500 name

• User defined

Attributes specified by Id or XPath expression

Normally use Subject or Resource, not both

Pag. 19

Rule Element

The main components of the <rule>
element are:

• a <target>

–the <target> element consists of

 a set of <resource> elements

 a set of <action> elements

 an environment

–the <target> element may be absent from a
<rule>. In this case the <target> of the rule is
the same as that of the parent <policy> element

• an <effect>

–Two values are allowed: “Permit” and “Deny”

• a <condition>

 Pag. 20

Policy Element

The main components of a <policy> element
are:

• a <target> element

–the <target> element consists of

 a set of <resource> elements

 a set of <action> elements

 an environment

–the <target> element may be declared explicitly or may be
calculated; two possible approaches:

 Make the union of all the target elements in the inner rules

 Make the intersection of all the target elements in the inner
rules

• a rule-combining algorithm-identifier

• a set of <rule> elements

• obligations

Pag. 21

PolicySet Element

The main components of a <policyset> element

are:

• a <target>

• a policy-combining algorithm-identifier

• a set of <policy> elements

• obligations

Pag. 22

A Policy Example

The Policy applies to requests for the server
called “SampleServer”

The Policy has a Rule with a Target that
requires an action of "login" and a
Condition that applies only if the Subject is
trying to log in between 9am and 5pm.

Note that this example can be extended to
include other Rules for different actions.

If the first Rule does not apply, then a
default Rule is used that always returns
Deny (Rules are evaluated in order).

Pag. 23

A Policy Example

<Policy PolicyId="SamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">

 <!-- This Policy only applies to requests on the SampleServer -->

 <Target>

 <Subjects> <AnySubject/> </Subjects>

 <Resources>

 <ResourceMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">SampleSe
rver

 </AttributeValue>

 <ResourceAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-
id"/> </ResourceMatch>

 </Resources>

 <Actions> <AnyAction/> </Actions>

 </Target>
Pag. 24

A Policy Example

<!-- Rule to see if we should allow the Subject to login -->

<Rule RuleId="LoginRule" Effect="Permit">

<!-- Only use this Rule if the action is login -->

 <Target>

 <Subjects> <AnySubject/> </Subjects>

 <Resources> <AnyResource/> </Resources>

 <Actions>

 <ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">login
</AttributeValue>

 <ActionAttributeDesignator
DataType=http://www.w3.org/2001/XMLSchema#string

 AttributeId="ServerAction"/>

 </ActionMatch>

 </Actions>

 </Target> Pag. 25

http://www.w3.org/2001/XMLSchema

A Policy Example

<!-- Only allow logins from 9am to 5pm -->

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-greater-than-
or-equal"

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-
only"> <EnvironmentAttributeSelector
 DataType="http://www.w3.org/2001/XMLSchema#time"
 AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-
time"/> </Apply>

 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</Attrib
uteValue> </Apply>

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-
equal"

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-
only"> <EnvironmentAttributeSelector
 DataType="http://www.w3.org/2001/XMLSchema#time"
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>

 </Apply>

 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">17:00:00</Attrib
uteValue> </Apply>

</Condition>

</Rule>

 </Policy> Pag. 26

Condition

Boolean function to decide if Effect applies

Inputs come from Request Context

Values can be primitive, complex or bags

Can be specified by id or XPath expression

Fourteen primitive types

Rich array of typed functions defined

Functions for dealing with bags

Order of evaluation unspecified

Allowed to quit when result is known

Side effects not permitted

Pag. 27

Functions

Equality predicates

Arithmetic functions

String conversion functions

Numeric type conversion functions

Logical functions

Arithmetic comparison functions

Date and time arithmetic functions

Non-numeric comparison functions

Bag functions

Set functions

Higher-order bag functions

Special match functions

XPath-based functions

Extension functions and primitive types

Pag. 28

Request and Response Context

Request Context

• Attributes of:

–Subjects – requester, intermediary, recipient, etc.

–Resource – name, can be hierarchical

–Resource Content – specific to resource type, e.g. XML
document

–Action – e.g. Read

–Environment – other, e.g. time of request

Response Context

• Resource ID

• Decision

• Status (error values)

• Obligations

Pag. 29

XACML History

First Meeting – 21 May 2001

Requirements from: Healthcare, DRM,
Registry, Financial, Online Web, XML
Docs, Fed Gov, Workflow, Java, Policy
Analysis, WebDAV

XACML 1.0 - OASIS Standard – 6
February 2003

XACML 1.1 – Committee Specification – 7
August 2003

XACML 2.0 – In progress – complete
summer 2004

Pag. 30

FINE

