Lesson 23 – Secure Business Process

Service Oriented Architectures Security

Module 1 - Basic technologies

Unit 1 – Introduction

Ernesto Damiani

Università di Milano

Web Evolution

Current: Human and some automated usage

- Interactive Web pages
- XML technology (data exchange, data representation)
- **RESTful Web Services (URI, CRUD)**
- SOAP Web Services (WSDL, SOAP)
- Semantic Web (RDF, OWL, RuleML, Web databases)

Future: Semantic Web Services

REST vs SOAP

 The basic REST design elements do not take composition into account

User Agent

Origin Server

- WS-BPEL is the standard Web service composition language. Business process models are used to specify how a collection of services is orchestrated into a composite service
- Can we apply WS-BPEL to RESTful services?

WS-Security reminder

WS-Security (Web Services Security): a communications protocol providing a means for applying security to Web Services

From: originally by IBM, Microsoft, and VeriSign, the protocol is now officially called WSS and developed via committee in Oasis-Open

Defines how integrity and confidentiality can be enforced on Web Services messaging

Use of SAML and Kerberos, and certificate formats Incorporates security features in the header of a SOAP message, working in the application layer (different from TLS-based security)

WS Policy reminder

WS-Policy: a specification that allows web services to use XML to advertise their policies (on security, Quality of Service, etc.)

• Used by web service consumers to specify their policy requirements

Secure WS Development

Inherent Security of Web Services

Security of the services

Security Software ≠ Software Security

Problems

- Late binding adds flexibility at the expense of reduced safety
- We are moving from the safety of *pre* runtime structuring&verification to the complete freedom of dynamic composition, while we are providing service
 - we need to go beyond traditional pre runtime testing and validation!

WS AND BP SECURITY CERTIFICATION

Certification scheme for services

Service composition process driven by the analysis of certified properties of individual services at selection time

 A (certifiably correct) inference process that starting from certified properties of individual services computes the properties of the composed process

Test-based Certification

- Evidence-based proofs that a test carried out on the service has given a result and some properties holds
- Require machinereadable (XML-based) certificates
- Support dynamic selection of single services

Test-based Certification (2)

- A service certification infrastructure provides
 - A certification process
 - A certificate-aware service discovery
 - (Semi-)automatic matching of consumer preferences and certificates
 - A mechanism to associate certificates with WSDL of the service

Model-based certifications: certifying compositions

Predicting non-functional properties of services obtained by composition

Model-checking techniques look promising for computing properties at run-time but

• run-time model checking not always possible

Contract-based approach check simple properties based on services' pre-conditions, post-conditions, and invariants

Certifying Compositions (2)

"Properties come first" strategy

- Security properties to achieve dictate a "safe" service composition scheme
- Run-time verification or validation

Example: cardinality-based privacy properties

- No more than k component services simultaneously hold a given information
- Easily imposed for series-only compositions
- Need for proving such a property run-time can drive the composition topology

Example

Property to be certified is clique avoidance, i.e., the impossibility of certain information-sharing cliques to arise

Properties of individual services in an orchestration

- "Invocation parameters are retained by the invoked service for less than 5 msec"
- "Invocation parameters cannot be inferred from other internal variables or results"

Example

Orchestrator will invoke component services in a linear sequence

Orchestration timing (certifiably) shows that invocations are being clocked at 10 msec from each other

 No information-sharing clique of services can be formed

A process-wide security property of clique avoidance is inferred dynamically from individual services' certifications and process execution context

Other families of certifiable properties

- Knowledge sharing/privacy
- Separation of duty
- Deadline completion
- •

In principle, it can hold for REST as well..

But unfortunately no BPEL support (yet?)

Integrated REST and BPEL

BPEL Fault-Handler

BPEL faults are of two types:

- business faults: application specific faults returned by a service invoked
- runtime faults: triggered or detected by the environment

Handling runtime faults requires finding a replacement for the failed service

Reactions

Retry

• transient faults

Rebind

• find a suitable replacement for previous service

Restructure (local reconfiguration)

• find a collection of services that satisfies request, or merge given collection into one

S&R-by-Design Considerations

WHAT I HAVE

- Separation of code from the actual business logic
- Reliability, based on the recovery from a failed component service.
 - This involves: rerouting of processes that have already begun execution

WHAT I NEED

- Efficient recovery from a failure of component services
- Service selection based on the composition constraints (business rules)

Security and Privacy - Today

Today transactions are secured using WSS toolkits to implement the Web Service security standards

Usually support for X.509 Certificates or password credentials

Basic Business Process Security Requirements

Identity Management: Each entity must be able to identity itself to the party it wants to communicate with

Policy Management: Each entity enforces policies with other entities. E.g. message format, who has access to what, what one needs to process

Secure Messaging: authentication, confidentiality, integrity, non-repudiation

Service Selection Algorithm

- Finds a replacement service if documented: the algorithm will find a replacement service if it is explicitly defined or selection is based on the service categories
- Is correct: selection of the service must be such that it satisfies the business and security requirements given as rules
- Efficiency: The time complexity of the algorithm primarily arises from the inference engine small number of rules

Security and Privacy – "Tomorrow"

Security and Privacy – "Tomorrow"

Web services infrastructure moves toward WS-Trust credential servers for token issuance and support of WS-Federation

Reading List

- Web Services Choreography Working Group , <u>http://www.w3.org/2002/ws/chor/</u>
- Web Services Federation Language (WS-Federation), <u>http://msdn.microsoft.com/webservices/webservices/understanding/advancedwebse</u> <u>rvices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-federation.asp</u>
- A Case Study of the WS-Security Framework, <u>http://www.cs.ucsb.edu/~gayatri/Presentations/WS%20Case%20Study.ppt</u>
- Web Services Choreography and Process Algebra, <u>http://www.daml.org/services/swsl/materials/WS-CDL.ppt</u>
- WS Choreography Overview, <u>http://xml.coverpages.org/BurdettWSChoreographyOverview200306.ppt</u>
- **BPEL Overview,** <u>http://www.oracle.com/technology/tech/webservices/ppt/BPELOverview.ppt#1</u>
- Ernesto Damiani, Antonio Maña: Toward WS-certificate. SWS 2009: 1-2 http://portal.acm.org/citation.cfm?doid=1655121.1655123
- M. Anisetti, C. Ardagna, F. Guida, S. Gürgens, V. Lotz, A. Maña, C. Pandolfo, J.-C. R. Pazzaglia, G. Pujol, G. Spanoudakis: ASSERT4SOA: Toward Security Certification of Service-Oriented Applications. OTM Workshops 2010: 38-40 <u>http://www.springerlink.com/content/131162771vw62450/</u>
- C. Pautasso, BPEL for REST, Proc. of the 6th International Conference on Business Process Management (BPM 2008), Milan, Italy, September 2008.

Secure orchestrations via Transformations

BPEL process seen as a graph Graph transformation rules express possible local changes

- Unroll loops
- split parallel node composition into a sequence parallel node composition

Restructure

BPEL process seen as a graph

 Graph transformation rules express possible local changes

At this stage we consider

- split a node into a sequence
- parallel node composition
- branch composition

