
Service Oriented Architectures Security

Module 1 - Basic technologies

Unit 2 – SOAP

Ernesto Damiani

Università di Milano

Lesson 3 – SOAP message structure

SOAP structure (1)

• SOAP message = SOAP envelope

• Envelope contains two parts:

– Header (optional): independent header blocks with meta
data (security, transactions, session,…)

– Body: several blocks of application data

SOAP structure (2)

• SOAP does not define the semantics of the header

nor the body, but only the structure of the message

SOAP message structure

SOAP header (1)

• The header is intended as a generic place holder

for information that is not necessarily application

dependent (the application may not even be aware

that a header was attached to the message)

– Typical uses of the header are: coordination information,
identifiers (e.g., for transactions), security information
(e.g., certificates)

SOAP header (2)

• SOAP provides mechanisms to specify who should

deal with headers and what to do with them. For

this purpose it includes:

– Actor attribute: who should process that particular header
block

– Boolean mustUnderstand attribute: indicates whether it is
mandatory to process the header. If a header is directed
at a node (as indicated by the actor attribute), the
mustUnderstand attribute determines whether it is
mandatory to do so

– SOAP 1.2 added a relay attribute (forward header if not
processed)

SOAP header example

Example: security headers

SOAP body

• The body is intended for the application specific

data contained in the message

– A body element is equivalent to a header block with
attributes actor=ultimateReceiver and mustUnderstand=1

• Unlike for header blocks, SOAP does specify the

contents of some body elements: e.g., it provides a

mapping of RPC to a SOAP body element (RPC

conventions)

– The Fault entry (for reporting errors in processing a SOAP
message)

Sample SOAP body

Putting it together

Fault management (1)

• When a SOAP message could not be processed, a

SOAP fault is returned

– A fault must carry the following information:

 Fault Code: indicating the class of error and possibly a subcode
(for application specific information)

 Fault String: human readable explanation of the fault (not
intended for automated processing)

 Fault Actor: who caused the fault to happen

 Detail: application specific data related to the fault

Fault management (2)

– The fault codes include:

 Version Mismatch: invalid namespace in SOAP envelope

 Must Understand: a header element with “must understand”
set to “true” was not understood

 Client: message was incorrect (format or content)

 Server: problem with the server, message could not be
processed

– Errors in understanding a mandatory header block are
responded using a fault element, but also include a special
header indicating which one of the original header blocks
was not understood

Message processing (1)

• For each message received, every SOAP node

on the message path must process the

message as follows:

1. Decide in which roles to act (standard roles: next or
ultimateReceiver, or other application-defined roles).
These roles may also depend on the contents of the
message

Message processing (2)

2. Identify the mandatory header blocks targeted at the
node (matching role, mustUnderstand=true)

 If a mandatory header block is not understood by the
node, a fault must be generated. The message must not
be processed further

3. Process the mandatory header blocks and, in case of
the ultimate receiver, the body. Other header blocks
targeted at the node maybe processed. The order of
processing is not significant

• SOAP intermediaries will finally forward the

message

Message processing (3)

• Processed header blocks may be removed

depending on the specification for the block

• Header blocks which were targeted at the

intermediary but not processed are relayed only if

the relay attribute is set to true

• Active SOAP intermediaries may also change a

message in other ways (e.g., encrypt the message)

SOAP RPC representation

• SOAP specifies a uniform representation for RPC

requests and responses which is platform

independent. It does not define mappings to

programming languages

• SOAP RPC does not support advanced RPC/RMI

features such as object references or distributed

garbage collection. This can be added by applications

or additional standards (see WSRF)

• Formally, RPC is not part of the core SOAP

specification. Its use is optional

RPC Example

SOAP HTTP binding (1)

• SOAP messages can be transferred using any

protocol

• A binding of SOAP to a transport protocol is a

description of how a SOAP message is to be sent

using that transport protocol

• Binding specifies how response and request

messages are correlated

• The SOAP binding framework expresses guidelines

for specifying a binding to a particular protocol

SOAP HTTP binding (2)

SOAP HTTP binding (3)

• SOAP messages are typically transferred using HTTP

• The binding to HTTP defined in the SOAP

specification

• SOAP can use GET or POST. With GET, the request

is not a SOAP message but the response is a SOAP

message, with POST both request and response are

SOAP messages (in Version 1.2, Version 1.1 mainly

considers the use of POST)

SOAP HTTP binding (4)

POST request example

POST response example

Global view

Other bindings

WS Invocation Framework

• WS Invocation Framework

– Use WSDL to describe a service

– Use WSIF to let the system decide what to do when the
service is invoked:

 If the call is to a local EJB then do nothing

 If the call is to a remote EJB then use RMI

 If the call is to a queue then use JMS

 If the call is to a remote Web service then use SOAP and XML

• There is a single interface description, the system

decides on the binding

• This type of functionality is at the core of the

notion of Service Oriented Architecture

SOAP attachments (1)

• SOAP is based on XML and relies on XML for

representing data types

• The original idea in SOAP was to make all data

exchanged explicit in the form of an XML document

much like what happens with IDLs in conventional

middleware platforms

SOAP attachments (2)

SOAP attachment problem (1)

• This approach reflects the implicit assumption that

what is being exchanged is similar to input and

output parameters of program invocations

• It makes it very difficult to use SOAP for

exchanging complex data types that cannot be easily

translated to XML (and there is no reason to do so):

images, binary files, documents, proprietary

representation formats, embedded SOAP messages,

etc.

A preliminary solution (1)

• There is a “SOAP message with attachments note”

proposed in 2002 that addressed this problem

• It uses MIME types (like e-mails) and it is based in

including the SOAP message into a MIME element

that contains both the SOAP message and the

attachment (see next page)

A preliminary solution (2)

• The solution is simple and it follows the same

approach as that taken in e-mail messages: it

includes a reference and has the actual attachment

at the end of the message

• The MIME document can be embedded into an

HTTP request in the same way as the SOAP message

Other solutions

• Problems with this technique: handling the

message implies dragging the attachment along,

which can have performance implications for large

messages

– scalability can be seriously affected as the attachment is
sent in one go (no streaming)

– not all SOAP implementations support attachments

– SOAP engines must be extended to deal with MIME types
(not too complex but it adds overhead)

• Alternative proposals include DIME of Microsoft

(Direct Internet Message Encapsulation) and WS-

attachments

Example

SOAP attachment problem (2)

• Attachments are relatively easy to include in a

message and all proposals (MIME or DIME based)

are similar in spirit

SOAP attachment problem (3)

• The differences are in the way data is streamed

from the sender to the receiver and how these

differences affect efficiency.

• MIME is optimized for the sender but the receiver

has no idea of how big a message it is receiving as

MIME does not include message length for the parts

it contains.

– This may create problems with buffers and memory
allocation

– It also forces the receiver to parse the entire message in
search for the MIME boundaries between the different parts
(DIME explicitly specifies the length of each part which can
be used to skip what is not relevant)

SOAP attachment problem (4)

• All these problems can be solved with MIME as it

provides mechanisms for adding part lengths and it

could conceivably be extended to support some basic

form of streaming

• Technically, these are not very relevant issues and

have more to do with marketing and control of the

standards

– The real impact of attachments lies on the specification of
the interface of Web services we’ll see later on (how to
model attachments in WSDL?)

SOAP and client-server model

• The close relation among SOAP, RPC and HTTP

has two main reasons:

– SOAP has been initially designed for client server type of
interaction which is typically implemented as RPC or
variations thereof

– RPC, SOAP and HTTP follow very similar models of
interaction that can be very easily mapped into each other
(and this is what SOAP has done)

SOAP SWOT analysis (1)

• The advantages of SOAP arise from

– its ability to provide a universal vehicle for conveying
information across heterogeneous middleware platforms
and applications. In this regard, SOAP will play a crucial
role in enterprise application integration efforts in the
future as it provides the standard that has been missing
all these years

SOAP SWOT analysis (2)

• The limitations of SOAP arise from

– its adherence to the client server model: data exchanges
as parameters in method invocations

 rigid interaction patterns that are highly synchronous

– its simplicity: SOAP is not enough in a real application,
many aspects are missing

SOAP and databases (1)

• Some of the first systems to incorporate SOAP as

an access method have been databases. The process

is extremely simple: a stored procedure is essentially

an RPC interface

– Web service = stored procedure

– IDL for stored procedure = translated into WSDL

– Call to Web service = use SOAP engine to map to call to
stored procedure

• This use demonstrates how well SOAP fits with

conventional middleware architectures and

interfaces. It is just a natural extension to them

SOAP and databases (2)

SOAP summary (1)

• SOAP, in its current form, provides a basic

mechanism for encapsulating messages into an XML

document

– mapping the XML document with the SOAP message into
an HTTP request

– transforming RPC calls into SOAP messages

– simple rules on how to process a SOAP message (rules
became more precise and comprehensive in v1.2 of the
specification)

SOAP summary (2)

• SOAP is a very simple protocol intended for

transferring data from one middleware platform to

another. In spite of its claims to be open (which

are true), current specifications and

implementations are very tied to RPC and HTTP

• SOAP takes advantage of the standardization of

XML to resolve problems of data representation

and serialization (it uses XML Schema to represent

data and data structures, and it also relies on XML

for serializing the data for transmission)

SOAP summary (3)

• As XML becomes more powerful and additional

standards around XML appear, SOAP can take

advantage of them by simply indicating what

schema and encoding is used as part of the SOAP

message

• Current schema and encoding are generic but

soon there will be vertical standards implementing

schemas and encoding tailored to a particular

application area (e.g., the efforts around EDI)

FINE

