Wireless Networks and Protocols

MAP-TELE

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

Agenda

Introduction to Wireless Networks and Protocols

- » What are Wireless networks
- » History of wireless networks
- » Standards
- » Evolution and trends

Fundamentals of wireless communications

- » Transmission
- » Wireless data links and MAC
- » Networking
- » Mobility management

Agenda

Telecommunications systems

- » GSM and GPRS
- » UMTS
- » TETRA
- » Broadcast and satellite: DVB, DMB

IEEE wireless data networks

- » WLAN: 802.11
- » WMAN: 802.16
- » WPAN: 802.15

Convergence and interoperability of wireless systems

- » 4G wireless networks
- » 3GPP and Mobile IPv6 approaches
- » Integration of ad-hoc networks

Agenda:QoS

Quality of service

- » Characterization and models
- » Case studies: 3GPP-QoS, IEEE-QoS, IP-QoS

Support for services and applications

- » Web services components: XML and SOAP, UDDI and WSDL
- » Services and applications platforms

Bibliography

- Slides
- Recommended papers
- Chapters from multiple books
 - » Wireless and Mobile Network Architectures, Yi-Bing Lin, Imrich Chlamtac Wiley, 2001
 - » Wireless IP and Building the Mobile Internet, Sudhir Dixit, Ramjee Prasad, Artech House, 2002.
 - » Andrea Goldsmith. Wireless communications. 2006. Cambridge University Press
 - » The 3G IP Multimedia Subsystem, Merging the Internet and the Cellular Worlds, Gonzalo Camarillo and Miguel a. Garcia-Martin, Wiley, Second Edition, 2005
 - » Ad-hoc Wireless Networks, Architectures and Protocols, C. Silva Murthy, B. Manoj, Prentice Hall, 2004
 - » Advanced Wireless Networks 4G Technologies, S. Glisic, Wiley, 2006.
 - » Mobile Communications, Jochen Schiller, Second Edition, Addison-Wesley, 2003
 - » Wireless Communications Principles and Practice, Theodore S. Rappaport, Second Edition, Prentice Hall, 2002
 - » Mobile IP Technology and Applications, Stefan Raab and Madhavi W. Chandra, Cisco Press, 2005
 - » GSM cellular radio telephony, Joachim Tisal, John Wiley & Sons, 1997
 - » Wireless Communications and Networks, William Stallings, Prentice Hall, 2002
 - » WCDMA for UMTS : radio acess for third generation mobile communications, Harri Holma, John Wiley & Sons, 2000
 - » UMTS networks : architecture, mobility and services, Heikki Kaaranen, et al, John Wiley & Sons, 2001

WNP – Wireless Networks

- About wireless communications systems
- Addressed from a **network** and system perspectives

Common wireless communications systems

BT FMXM Cellular GPS DVBH Apps Processor Media Processor

Mobile phone

Wired versus Wireless networks

• Wireless Networks characterised by

- » wireless links
- » mobility of nodes
- » dynamic network topologies

Wireless Link

Low powers received = low SNR

 Large % of bits possibly received in error

SNR varies with time and positions

• Variable capacity (bit/s) or variable error ratio (BER)

Broadcast nature

• Information easily accessible by third parties. Need security mechanisms

Mobility

Mobility: characteristic of portable terminals and moving objects

Problems introduced by mobile terminals

» Determine new location

» Find radio resources in new location

» Determine the new path for data delivery

The problem

The terminal is receiving packets and, after moving to a newlocation, the terminal is expected to continue receiving packets

 \longleftrightarrow

What procedure would you implement to manage the terminal mobility?

Dynamic Network Topology

Capacity of the network becomes hard to characterize

History – Past and Radio

Past

» Fire signals communicate the fall of Troy to Athens

» 2nd century B.C., sets of torches to transmit characters

» 1837, electric telegraph

Radio transmission

- » 1895, first radio transmission
- » 1906, amplitude-modulated (AM) radio
- » 1920, broadcast of radio news program
- » 1928, TV broadcast trials
- » 1933, frequency-modulated (FM) radio
- » 1946, Swedish police: radio phones installed in cars
- » 1950, mobile phone with direct dialling

Cell, 1st Generation

- 1950: Cellular network
 concept
- ◆ 1971, Finland: ARP, first cellular, mobile network
- 1982, NMT network covering Nordic countries
- 1983, AMPS in America
- 1985, TACS, Total Access Communications Service, in Europe

 1st Generation: Analogue, Frequency Division Multiplexing

- The power of transmitted signal falls with square of distance.
- Users can operate on same frequency at separate locations

History – Packet Radio

1971, ALOHANET packet radio

• » computers communicate with central HUB

1980's ad-hoc, self-configurable packet networks

1985, Wireless LANs authorized to use ISM bands

1997, first WLAN standard

History -2/3G

2nd Generation

- digital transmission and signalling; ISDN based
- » 1982, specification GSM is started
- » Early 1990's
 - Europe: GSM
 - USA: D-AMPS, cdmaOne
 - Japan: Personal Digital Cellular (PDC)

3G systems

- aimed at multimedia communication
- » 2001, Japan, first implementation of 3G systems

Types of Networks

WPAN - Wireless Personal Area Networks

 » short distances among a private group of devices

WLAN - Wireless Local Area Networks

• » areas such as an home, office or group of buildings

WMAN - Wireless Metropolitan Area Networks

• » from several blocks of buildings to entire cities

PLMN - Public Land Mobile Networks

• » regions and countries

Broadcast

» single direction, audio and video

Comparison

U=bit/s/Hz/km²

PLMN -> 10 to 40 U (based on UMTS)

WMAN -> 25 to 50 U

WLAN -> 100 to 500 U

Evolution of Technologies

Standard Organizations - IEEE

Standards – 3GPP

Scope of 3GPP

- » Specifications for the 3rd Generation mobile system
- »Maintain GSM, GPRS and EDGE
- » Specifications developed by Technical Specification Groups (TSG)
- <u>http://www.3gpp.org</u>

Standards - IETF

- Defines standards for the Internet, including
- » TCP/IP
- » key services
- » routing protocols
- » deployment of IP over technologies

http://www.ietf.org

Standards - Other

ITU - Worldwide

ETSI - Europe

3GPP2 – American 3GPP

Intro 28

Electromagnetic Wave

Frequencies for Radio Transmission

Frequency bands as defined by the ITU-R *Radio Regulations*

 $band_i \in [0.3 \times 10^i Hz, 3 \times 10^i Hz].$

- VLF Very Low Frequency
- VLF Very Low Frequency
- LF Low Frequency
- MF Medium Frequency
- HF High Frequency
- VHF Very High Frequency
- UHF Ultra High Frequency
- SHF Super High Frequency
- EHF Extremely High Frequency

Band Number	Symbol	Frequency Range
4	VLF	3-30 kHz
5	LF	30-300 kHz
6	MF	3000-3000 kHz
7	HF	3-30 MHz
8	VHF	30-300 MHz
9	UHF	300-3000 MHz
10	SHF	3-30 GHz
11	EHF	30-300 GHz
12		300-3000 GHz

 $f_c = 3 GHz \quad \Rightarrow \approx 10 cm$ $f_c = 1 GHz \quad \Rightarrow \approx 30 cm$ $f_c = 300 MHz \quad \Rightarrow \approx 1m$

Wireless Systems in Europe

- In Portugal ANACOM attributes the frequencies http://www.anacom.pt
- FWA Fixed Wireless Access
- ISM Industrial, Scientific and Medical

Wireless Systems in Europe	Frequency Range
	47-68 MHz
Broadcast TV	174-216 MHz
	470-582 MHz
	582-862 MHz
	890-914 MHz
2G PLMN (GSM)	935-959 MHz
20111011((050))	1710-1785 MHz
	1805-1880 MHz
	1900-1980 MHz
3C PLMN (IIMTS)	2010-2025 MHz
SGTEMIN (CMTS)	2010-2020 MHz 2110-2170 MHz
	2400-3600 MHz
FWA	3600-4200 MHz
I WA	24 5-26 5 CHz
	27.5-20.5 GHz
	12552 12567 LHz
	26057 27282 LHz
ISM	40.66.40.70 MHz
101/1	9400 9500 MHz
	5795 5875 MU-
	94 94 95 CH-
	24-24.25 GHZ

Spread Spectrum – Direct Sequence

Intro 79

Direct Sequence Spread Spectrum – Immunity to Interferences

Software Defined Radio

Software Defined Radio

aims at implementing the radio functions in software

• Digital Signal Processors being integrated with microcontroller better integration of radio and communications functions

Intro 81

Cognitive Radio

- Cognitive radio
 - » fills unused bands
 - » avoids interferences
 - » increases spectral efficiency

- Paves the way to
 - » dynamic spectrum licensing
 - » secondary markets in spectrum usage

Homework

- 1. Review slides
- 1. Detailed information about these topics can found at the Goldsmith's book
 - » Chap. 5 (sections 5.1, 5.2, 5.3, 5.5)
 - » Chap. 6 (sections 6.1, 6.3)
 - » Chap. 7 (sections 7.1, 7.2)
 - » Chap. 8 (section 8.1)
 - » Chap. 9 (section 9.1)
 - » Chap. 12 (sections 12.1, 12.2, 12.4)
 - » Chap. 13 (sections 13.1, 13.2, 13.3)