Lezione 14 – Model Transformations for BP Analysis and Execution

Ingegneria dei Processi Aziendali

Modulo 1 - Servizi Web

Unità didattica 1 – Protocolli Web

Ernesto Damiani

Università di Milano

Business Process Management (BPM)

Collection of methods and techniques to design, analyze, execute and monitor business operations involving humans, software, information and physical artifacts using process models.

OK, so what is a process model?

Collection of inter-dependent activities whose collective performance is intended to achieve a goal such as delivering a product or a service.

E,g. order-to-cash, procure-to-pay, issue-toresolution

Process models serve many purposes...

... they have many faces

...and can be seen from many perspectives

Control-flow

Data

Resource

Operational

Many in one, or one in many?

"The thing can be many in one sense, but also can be one in another sense."

Imam Ghazali

Revival of Religious Sciences

Process Modelling: Dealing with Multiplicity

Multiple modelling languages (meta-models) Multiple modelling viewpoints

- Control-flow view vs. data view
- Public views (protocols) vs. private views

Multiple abstraction levels

- High-level: tasks, performance metrics...
- Low-level: data transformations, application bindings...

Process Modelling Notations

- Business Process Modelling Notation (BPMN)
- Event-driven Process Chains (EPC)
- Business Process Execution Language (BPEL)
- State machines and variants (e.g. IBM Business State Machine, WWF)
- Petri nets (and variants, e.g. YAWL)

Model transformations

BPMN-to-BPEL

- Purpose: Transform models produced by analysts into models for developers (and vice-versa)
- Commonly supported in commercial tool, but in a limited manner

BPEL-to-Petri nets

• For analysis & verification

BPMN-to-Petri nets

 For analysis & verification (e.g. deadlockfreeness)

BPMN from 10 000 miles...

Event

Task

Flow

Gateway

BPMN: A more detailed view

Quick BPMN example

BPEL from 10 000 miles

- Basic activities: <assign>, <invoke>, <receive>
- Sequential flow: <sequence>, <while>, <switch>
- Block-structured parallel flow: <flow>
- Graph-oriented (parallel) flow: <*link*> **
- Event-action rules: <onEvent> **
- Other constructs not relevant to this talk...

****** Only partially supported by some tools

A quick BPEL example

<sequence> <invoke "check stock availability" .../> <switch (...) .../> <case "reject"> <invoke "order rejection" .../> </case> <otherwise> <sequence> <invoke "order acceptance" ... /> <flow> <invoke "invoicing" ... /> <invoke "ship goods" ... /> </flow> </sequence> </otherwise> </switch> </sequence> 15

BPMN-to-BPEL: Some monsters!

instance task (D)

Unstructured loop

Unbounded multipleinstance tasks (C)

Livelock

BPMN-to-BPEL (from 10 000 miles)

Repeat until reduction to a single node

- Identify a structured & quasi-structured SESE region
 → Fold into a BPEL structured activity
- Identify irreducible SESE regions without parallelism
 → Apply Goto→While transformations, repeat from 1
- 3. Identify acyclic fragments with concurrency
 → Fold into a BPEL activity with control links
- 4. Identify minimal unstructured components
 → BPEL event handlers

BPMN-BPEL: Structured Components

BPMN-BPEL: Structured Components

BPMN-BPEL: Structured Components

Example: Only Structured Components

Sequence-component

BPMN-to-BPEL: Acyclic component

BPMN

BPEL

Flow-component

Proposition: Every acyclic BPMN component with a single entry point and a single exit point that is 1-safe and sound can be mapped to a BPEL Flow with links

Example Structured+Acyclic Components

Minimizing the use of control links

For the rest...

Identify a minimal SESE region that is neither structured nor acyclic

For each action in the component, retrieve:

- All actions that immediately precede it
- All actions that immediately follow it

For each action, code the following behaviour using event-action rules:

- Wait for a suitable combination of predecessors to complete
- Perform action
- Notify completion to all successors

BPEL-to-Petri net Application to Conformance Checking

From BPEL to WF-nets

Petri net-based Conformance Checking

Objectives:

- quantitatively measure conformance
- locate deviations

Conformance Checking – Fitness

Conformance Checking – Fitness

No. of InstancesLog Traces1207
145
56
23
28
$$\rightarrow$$
 ABDEA
ACDHFA1207
145
23
28 \rightarrow ABDEA
ACDHFA1207
145
23
28 \rightarrow ABDEA
ACDHFA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA145
28 \rightarrow ACDHFA145
28 $f = \frac{1}{2}(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}) + \frac{1}{2}(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i})$ 145
28 \rightarrow ACDHFA145
28 \rightarrow ACDHFA145
28 \rightarrow ACDHFA145
28 \rightarrow ACDHFA

No. of InstancesLog Traces1207
145
56
23
28
$$\rightarrow$$
 ABDEA
ACDHFA1207
145
56
28 \rightarrow ABDEA
ACGDHFA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA1207
1207
145
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
145
28 \rightarrow ABDEA
ACDHFA1207
145
28 \rightarrow ABDEA
ACDHFA1207
145
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
145
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
145
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
145
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
200 \rightarrow ABDEA
 $\sum_{i=1}^{k} n_i n_i n_i$ 1207
200 \rightarrow ACDGHFA1207
200 \rightarrow ACDHFA1207
200 \rightarrow ACDHFA

No. of InstancesLog Traces1207
145
56
23
28
$$\rightarrow$$
 ABDEA
ACDHFA1207
145
23
28 \rightarrow ABDEA
ACGDHFA
ACDHFA1207
145
23
28 \rightarrow ABDEA
ACGDHFA
ACDHFA1207
145
23
28 \rightarrow ABDEA
ACDHFA1207
145
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207
207<

No. of InstancesLog Traces1207
145
56
23
28
$$\rightarrow$$
 ABDEA
ACDHFA1207
145
56
28 \rightarrow ABDEA
ACGDHFA
ACDHFA1207
145
56
ACGDHFA
ACHDFA
ACDHFA $f = \frac{1}{2}(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}) + \frac{1}{2}(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i})$ 1207
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
145
1

No. of InstancesLog Traces1207
145
56
23
28
$$\rightarrow$$
 ABDEA
ACDHFA1207
145
56
28 \rightarrow ABDEA
ACGDHFA
ACDHFA1207
145
56
28 \rightarrow ABDEA
ACGDHFA
ACGDHFA
ACDHFA

No. of InstancesLog Traces1207
145
56
23
28
$$\rightarrow$$
 ABDEA
ACDGHFA
ACGDHFA
ACDHFA23
28 $ACHDFA$
ACDHFA145
23
28 $ACHDFA$
ACDHFA145
23
28 $ACHDFA$
ACDHFA

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

$$f = \frac{1}{2}(1 - \frac{0+}{(1207 \cdot 7)+}) + \frac{1}{2}(1 - \frac{0+}{(1207 \cdot 7)+})$$

 $\mid f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i} \right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i} \right)$

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens = 0 consumed tokens = 9remaining tokens = 0 produced tokens = 9

No. of Instances	Log Traces
1207	ABDEA
145	ACDGHFA
56	→ACGDHFA
23	ACHDFA
28	ACDHFA

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

$$f = \frac{1}{2} \left(1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}\right) \\ + \frac{1}{2} \left(1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}\right)$$

missing tokens = 0 consumed tokens = 0remaining tokens = 0 produced tokens = 1

$$\left| f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i} \right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i} \right) \right|$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens = 0 consumed tokens = 1remaining tokens = 0 produced tokens = 2

No. of Instances	Log Traces
1207	ABDEA
145	ACDGHFA
56	ACGDHFA
23	→ACHDFA
28	ACDHFA

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens= 1consumed tokens= 2remaining tokens= 0produced tokens= 4

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens = 1 consumed tokens = 3remaining tokens = 0 produced tokens = 5

$$\left| f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i} \right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i} \right) \right|$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens = 1 consumed tokens = 4remaining tokens = 0 produced tokens = 6

$$\left| f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i} \right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i} \right) \right|$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens = 1 consumed tokens = 6remaining tokens = 0 produced tokens = 7

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

$$\begin{split} f = & \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \\ & + \frac{1}{2} (1 - \frac{0 + 0 + 0 +}{(1207 \cdot 7) + ((145 + 56) \cdot 9) +}) \end{split}$$

missing tokens = 1 consumed tokens = 7remaining tokens = 0 produced tokens = 8

$$f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i}\right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i}\right)$$

missing tokens	= 1	consumed tokens	= 8
remaining tokens	= 1	produced tokens	= 8

No. of Instances	Log Traces
1207	ABDEA
145	ACDGHFA
56	ACGDHFA
23	→ ACHDFA
28	ACDHFA

$$\left| f = \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i m_i}{\sum_{i=1}^{k} n_i c_i} \right) + \frac{1}{2} \left(1 - \frac{\sum_{i=1}^{k} n_i r_i}{\sum_{i=1}^{k} n_i p_i} \right) \right|$$

$$\begin{split} f = & \frac{1}{2} \big(1 - \frac{0 + 0 + 0 + (23 \cdot 1) + (28 \cdot 1)}{(1207 \cdot 7) + ((145 + 56) \cdot 9) + ((23 + 28) \cdot 8))} \big) \\ & + \frac{1}{2} \big(1 - \frac{0 + 0 + 0 + (23 \cdot 1) + (28 \cdot 1)}{(1207 \cdot 7) + ((145 + 56) \cdot 9) + ((23 + 28) \cdot 8))} \big) \end{split}$$

missing tokens	= 1	consumed tokens	= 8
remaining tokens	= 1	produced tokens	= 8

No. of Instances	Log Traces
1207	ABDEA
145	ACDGHFA
56	ACGDHFA
23	ACHDFA
28	→ ACDHFA

Conformance Checking -Appropriateness

100 % fitness but not sufficiently specific from **behavioral** point of view.

No. of Instances	Log Traces
1207	ABDEA
145	ACDGHFA
56	ACGDHFA
23	ACHDFA
28	ACDHFA

100 % fitness but not represented in **structurally** suitable way.

Ongoing work

Reversible BPMN \leftrightarrow **BPEL transformation**

Two-way transformation: BPEL \leftrightarrow FSM

- Application to automated service composition
- BPEL \rightarrow FSM not too difficult
- FSM \rightarrow BPEL more exciting, e.g.

