
1

Distributed Orchestration v.s.
Choreography:

The FOCAS Approach

Gabriel Pedraza, Jacky Estublier

Grenoble University. France

ICSP May 2009

2ICSP 2009. Vancouver

Abstract Process Engine Language (APEL)

x

x, y, z

y, z
t

y

t

X

B

t

Abstract Process model

3ICSP 2009. Vancouver

Abstract models

 Why using abstract models :

Describe the «business » process ,

Easy to read and understand,

Hide «irrelevant » details,

 Independent on any implementation,

Can be instantiated differently in different contexts,

Can be reused ….

 But cannot execute ! (useless ?)

4ICSP 2009. Vancouver

Orchestration: a process for calling WS

Requires to know at least:
Activity <-> WS.
Data <-> parameter

And to know at least:
Activity + data <->

method call,
Formats,
Protocols.

A B B1 CB3B2

Workflow engine

Workflow model

1 2 3 3 4 5

N1 N3 N2

5ICSP 2009. Vancouver

x

x, y, z

y, z t

y

t
X

B

t

Model composition: Abstract process execution

Process model

SC (t1, …) =
SB1 (…) =
SA (…) Service Model

XD = { …}
YD = { .. }
TD = …

Data model

WSDL

Executes … but still an academic exercise

6ICSP 2009. Vancouver

Orchestration: a workflow for calling WS

Requires to know at least:
Activity <-> WS.
Data <-> parameter

But also:
distribution constraints.
security properties.
error recovery,
performance issues,

…..

And to know at least:
Activity + data <->

method call,
Formats,
Protocols.

A B B1 CB3B2

Workflow engine

Workflow model

1 2 3 3 4 5

N1 N3 N2

7ICSP 2009. Vancouver

Non Functional properties : Annotations

 Non functional properties can be expressed as annotations on the
abstract model.

 Exemple of annotation available today :

Security,

Transaction,

Choreography (process distribution).

8ICSP 2009. Vancouver

Orchestration

A B B1 CB3B2

Workflow engine

Workflow model

1 2 3 3 4 5

Pros : Centralized
Easy to understand
Simple to design, administrate, dynamic selection, error recovery

Cons : Centralized
Bottleneck : scalability issues.

N1 N3 N2

9ICSP 2009. Vancouver

Choreography

A B B1 CB3B2

Pros :
Scalable.
Availability, efficiency, Improved security, flexibility

Cons :
Difficult to design and understand
Difficult to implement, control, administrate, ….
Requires to execute a «routing » algorithm on each server.

N1 N3 N2

10ICSP 2009. Vancouver

Distributed orchestration

 A distribution annotation on an orchestration model.

x

x, y, z

y, z
t

y

t

X

B

tN2

N3 N3

N1N1

11ICSP 2009. Vancouver

Distribution annotation : FOCAS/Eclipse

12ICSP 2009. Vancouver

From Orchestration to Choreography

 Transform the central process : one sub-process per node

N1

N3 N2

14ICSP 2009. Vancouver

Abstract Choreography

15ICSP 2009. Vancouver

Choreography Server (N1)

SAM Machine (ID = N1)

Orchestration
Engine

OCS ICS

Event Notification
Interface

Data Management
Interface

OSGi Services

Routing Table Node N1
X/B.end ->N3:X_C/C.begin
X/B.begin->N2: X_B/B2.begin

Outgoing
messages

Incoming
messages

Choreography
Server

(Generic code)

Process specific
model (abstract

services) and
routing metadata

Concrete
Services

Logical
Layer

Physical
Layer

Infrastructure
Abstract - Concrete Binding

Web Services

interprets

16ICSP 2009. Vancouver

Deployment server : SAM

 Service Abstract Machine.

Subsumes current SOA platforms (currently: OSGi, iPOJO, AXIS,
uPnP, DPWS, SNMP).

Natively distributed. SAMs are discovered dynamically.

● N3:X_C/C.begin (t).

Routing and deployment tables can be changed dynamically

Choreography topology can be changed dynamically

Process model can be changed dynamically

17ICSP 2009. Vancouver

Choreography server

 The workflow engine is unmodified: identical on each node.

Reuse existing workflow engines

 The Choreography server is made of two generic components

Output Choreography Server (OCS). Interprets routing tables.

 Input Choreography Server (ICS). Starts activities.

 Each Choreography node is identical (process independent).

Can be installed once for all

Can run any process

Can run any number of process instance

18ICSP 2009. Vancouver

Choreography

Underlying

services level

SAM Machine (ID=N3)

Orchestration
Engine

ICS

OCS

SAM Machine (ID=N2)

Orchestration
Engine

ICS

OCS

SAM Machine (ID=N1)

Orchestration
Engine

ICS

OCS

G
e
n
e
ric C

o
d
e

L
e
v
e
l

X/B.end-
>X_C/C.b
X/B.begin-
>X_B/B2.b

X_B/B3.end -
>X/B.end

X_C/C.end -
>X.end

A
p
p
lica

tio
n

S
p
e
cific L

e
v
e
l

N1: sub-process, Routing N2: sub-process, Routing N3: sub-process, Routing

19ICSP 2009. Vancouver

Conclusion: Orchestration v.s. Choreography

 Orchestration. good for design:

Easy to understand and communicate

Business model, error recovery, dynamic selection etc.

 Choreography. good for execution:

Efficient, Scalable, Adaptable to various contexts

Fully dynamic

 Annotations can bring the best of both camps:

Designing an orchestration (a centralized process),

Executing a choreography,

Without any change in the model,

Without any change in process engine, editor, tools …

A few new meta data (model)

20ICSP 2009. Vancouver

Conclusion2: Enhancing process technology

 From Orchestration to choreography

A transformation that enforces the same process semantics

Does not change the process model

Does not change the PML environment (interpretors, editors, …)

 Annotation

Are also abstract

Distribution annotation

Provides large dynamic capabilities

 Can be applied to any process model and engine
 Any process can be executed in a distributed way whatever the

formalism (if abstract).

 A practical way to apply separation of concerns to process technology.

