
1

Distributed Orchestration v.s. 
Choreography:

The FOCAS Approach 

Gabriel Pedraza, Jacky Estublier

Grenoble University. France

ICSP May 2009



2ICSP 2009. Vancouver

Abstract Process Engine Language (APEL)

x

x, y, z

y, z
t

y

t

X

B

t

Abstract Process model



3ICSP 2009. Vancouver

Abstract models

 Why using abstract models :

Describe the «business » process ,

Easy to read and understand,

Hide «irrelevant » details,

 Independent on any implementation,

Can be instantiated differently in different contexts,

Can be reused ….

 But cannot execute ! (useless ?)



4ICSP 2009. Vancouver

Orchestration: a process for calling WS

Requires to know at least:
Activity <-> WS.
Data <-> parameter

And to know at least:
Activity + data <-> 

method call, 
Formats,
Protocols.

A B B1 CB3B2

Workflow engine

Workflow model

1          2         3       3       4           5

N1 N3 N2



5ICSP 2009. Vancouver

x

x, y, z

y, z t

y

t
X

B

t

Model composition: Abstract process execution

Process model

SC (t1, …) =
SB1 (…) =
SA (…) Service Model

XD = { …}
YD = { .. }
TD = …

Data model

WSDL

Executes … but still an academic exercise



6ICSP 2009. Vancouver

Orchestration: a workflow for calling WS

Requires to know at least:
Activity <-> WS.
Data <-> parameter

But also:
distribution constraints.
security properties.
error recovery,
performance issues, 

….. 

And to know at least:
Activity + data <-> 

method call, 
Formats,
Protocols.

A B B1 CB3B2

Workflow engine

Workflow model

1          2         3       3       4           5

N1 N3 N2



7ICSP 2009. Vancouver

Non Functional properties : Annotations

 Non functional properties can be expressed as annotations on the 
abstract model.

 Exemple of annotation available today :

Security,

Transaction,

Choreography (process distribution).



8ICSP 2009. Vancouver

Orchestration

A B B1 CB3B2

Workflow engine

Workflow model

1          2         3       3       4           5

Pros : Centralized 
Easy to understand
Simple to design, administrate, dynamic selection, error recovery

Cons : Centralized 
Bottleneck : scalability issues.

N1 N3 N2



9ICSP 2009. Vancouver

Choreography

A B B1 CB3B2

Pros :
Scalable.
Availability, efficiency, Improved security, flexibility

Cons :
Difficult to design and understand
Difficult to implement, control, administrate, ….
Requires to execute a «routing » algorithm on each server.

N1 N3 N2



10ICSP 2009. Vancouver

Distributed orchestration

 A distribution annotation on an orchestration model.

x

x, y, z

y, z
t

y

t

X

B

tN2

N3 N3

N1N1



11ICSP 2009. Vancouver

Distribution annotation : FOCAS/Eclipse



12ICSP 2009. Vancouver

From Orchestration to Choreography

 Transform the central process : one sub-process per node

N1

N3 N2



14ICSP 2009. Vancouver

Abstract Choreography



15ICSP 2009. Vancouver

Choreography Server (N1)

 

SAM Machine (ID = N1) 

Orchestration 
Engine 

OCS ICS 

Event Notification 
Interface 

Data Management 
Interface 

OSGi Services 

Routing Table Node N1 
X/B.end ->N3:X_C/C.begin 
X/B.begin->N2: X_B/B2.begin 

 

Outgoing 
messages 

Incoming 
messages 

Choreography 
Server 

(Generic code) 
 

Process specific 
model (abstract 

services) and 
routing metadata 

Concrete 
Services 

Logical 
Layer 

Physical 
Layer 

Infrastructure 
Abstract - Concrete Binding 

Web Services 

interprets



16ICSP 2009. Vancouver

Deployment server : SAM

 Service  Abstract Machine.

Subsumes current SOA platforms (currently: OSGi, iPOJO, AXIS, 
uPnP, DPWS, SNMP).

Natively distributed. SAMs are discovered dynamically.

● N3:X_C/C.begin (t).

Routing and deployment tables can be changed dynamically

Choreography topology can be changed dynamically

Process model can be changed dynamically



17ICSP 2009. Vancouver

Choreography server

 The workflow engine is unmodified: identical on each node.

Reuse existing workflow engines

 The Choreography server is made of two generic components

Output Choreography Server (OCS). Interprets routing tables.

 Input Choreography Server (ICS). Starts activities.

 Each Choreography node is identical (process independent). 

Can be installed once for all

Can run any process

Can run any number of process instance



18ICSP 2009. Vancouver

Choreography

 
Underlying  

services level 

SAM Machine (ID=N3) 

 

Orchestration 
Engine 

 
ICS 

 
OCS 

SAM Machine (ID=N2) 

 

Orchestration 
Engine 

 
ICS 

 
OCS 

SAM Machine (ID=N1) 

Orchestration 
Engine 

 
ICS 

 
OCS 

G
e
n
e
ric C

o
d
e
 

L
e
v
e
l 

X/B.end-
>X_C/C.b 
X/B.begin-
>X_B/B2.b 
 

X_B/B3.end -
>X/B.end 
 
 

X_C/C.end -
>X.end 
 

A
p
p
lica

tio
n
 

S
p
e
cific L

e
v
e
l 

N1: sub-process, Routing         N2: sub-process, Routing          N3: sub-process, Routing 



19ICSP 2009. Vancouver

Conclusion: Orchestration v.s. Choreography

 Orchestration. good for design:

Easy to understand and communicate

Business model, error recovery, dynamic selection etc.

 Choreography. good for execution:

Efficient, Scalable, Adaptable to various contexts

Fully dynamic

 Annotations can bring the best of both camps:

Designing an orchestration (a centralized process),

Executing a choreography,

Without any change in the model,

Without any change in process engine, editor, tools …

A few new meta data (model)



20ICSP 2009. Vancouver

Conclusion2: Enhancing process technology

 From Orchestration to choreography

A transformation that enforces the same process semantics

Does not change the process model

Does not change the PML environment (interpretors, editors, …) 

 Annotation 

Are also abstract 

Distribution annotation 

Provides large dynamic capabilities

 Can be applied to any process model and engine
 Any process can be executed in a distributed way whatever the 

formalism (if abstract).

 A practical way to apply separation of concerns to process technology.


