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Abstract Process Engine Language (APEL)
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Abstract models

 Why using abstract models :

Describe the «business » process ,

Easy to read and understand,

Hide «irrelevant » details,

 Independent on any implementation,

Can be instantiated differently in different contexts,

Can be reused ….

 But cannot execute ! (useless ?)
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Orchestration: a process for calling WS

Requires to know at least:
Activity <-> WS.
Data <-> parameter

And to know at least:
Activity + data <-> 

method call, 
Formats,
Protocols.

A B B1 CB3B2

Workflow engine

Workflow model

1          2         3       3       4           5

N1 N3 N2
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Model composition: Abstract process execution

Process model

SC (t1, …) =
SB1 (…) =
SA (…) Service Model

XD = { …}
YD = { .. }
TD = …

Data model

WSDL

Executes … but still an academic exercise
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Orchestration: a workflow for calling WS

Requires to know at least:
Activity <-> WS.
Data <-> parameter

But also:
distribution constraints.
security properties.
error recovery,
performance issues, 

….. 

And to know at least:
Activity + data <-> 

method call, 
Formats,
Protocols.

A B B1 CB3B2

Workflow engine

Workflow model

1          2         3       3       4           5

N1 N3 N2
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Non Functional properties : Annotations

 Non functional properties can be expressed as annotations on the 
abstract model.

 Exemple of annotation available today :

Security,

Transaction,

Choreography (process distribution).
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Orchestration

A B B1 CB3B2

Workflow engine

Workflow model

1          2         3       3       4           5

Pros : Centralized 
Easy to understand
Simple to design, administrate, dynamic selection, error recovery

Cons : Centralized 
Bottleneck : scalability issues.

N1 N3 N2



9ICSP 2009. Vancouver

Choreography

A B B1 CB3B2

Pros :
Scalable.
Availability, efficiency, Improved security, flexibility

Cons :
Difficult to design and understand
Difficult to implement, control, administrate, ….
Requires to execute a «routing » algorithm on each server.

N1 N3 N2
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Distributed orchestration

 A distribution annotation on an orchestration model.
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Distribution annotation : FOCAS/Eclipse
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From Orchestration to Choreography

 Transform the central process : one sub-process per node

N1

N3 N2
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Abstract Choreography
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Choreography Server (N1)
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Deployment server : SAM

 Service  Abstract Machine.

Subsumes current SOA platforms (currently: OSGi, iPOJO, AXIS, 
uPnP, DPWS, SNMP).

Natively distributed. SAMs are discovered dynamically.

● N3:X_C/C.begin (t).

Routing and deployment tables can be changed dynamically

Choreography topology can be changed dynamically

Process model can be changed dynamically
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Choreography server

 The workflow engine is unmodified: identical on each node.

Reuse existing workflow engines

 The Choreography server is made of two generic components

Output Choreography Server (OCS). Interprets routing tables.

 Input Choreography Server (ICS). Starts activities.

 Each Choreography node is identical (process independent). 

Can be installed once for all

Can run any process

Can run any number of process instance
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N1: sub-process, Routing         N2: sub-process, Routing          N3: sub-process, Routing 
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Conclusion: Orchestration v.s. Choreography

 Orchestration. good for design:

Easy to understand and communicate

Business model, error recovery, dynamic selection etc.

 Choreography. good for execution:

Efficient, Scalable, Adaptable to various contexts

Fully dynamic

 Annotations can bring the best of both camps:

Designing an orchestration (a centralized process),

Executing a choreography,

Without any change in the model,

Without any change in process engine, editor, tools …

A few new meta data (model)
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Conclusion2: Enhancing process technology

 From Orchestration to choreography

A transformation that enforces the same process semantics

Does not change the process model

Does not change the PML environment (interpretors, editors, …) 

 Annotation 

Are also abstract 

Distribution annotation 

Provides large dynamic capabilities

 Can be applied to any process model and engine
 Any process can be executed in a distributed way whatever the 

formalism (if abstract).

 A practical way to apply separation of concerns to process technology.


