
Service Oriented Architectures

Module 1 – Basic technologies

Ernesto Damiani

Università degli Studi di Milano

Security in Process Calculi

Overview

Pi calculus

• Core language for parallel programming

• Modeling security via name scoping

Applied pi calculus

• Modeling cryptographic primitives with
functions and equational theories

• Equivalence-based notions of security

• A little bit of operational semantics

• Security as testing equivalence

Pi Calculus

Fundamental language for concurrent systems

• High-level mathematical model of parallel processes

• The “core” of concurrent programming languages

• By comparison, lambda-calculus is the “core” of functional
programming languages

Mobility is a basic primitive

• Basic computational step is the transfer of a
communication link between two processes

• Interconnections between processes change as they
communicate

Can be used as a general programming language

[Milner et al.]

A Little Bit of History

1980: Calculus of Communicating Systems (CCS) [Milner]

1992: Pi Calculus [Milner, Parrow, Walker]

• Ability to pass channel names between processes

1998: Spi Calculus [Abadi, Gordon]

• Adds cryptographic primitives to pi calculus

• Security modeled as scoping

• Equivalence-based specification of security properties

• Connection with computational models of cryptography

2001: Applied Pi Calculus [Abadi, Fournet]

• Generic functions, including crypto primitives

Pi Calculus Syntax

Terms

• M, N ::= x variables

| n names

Processes

• P,Q ::= nil empty process

| ūN.P send term N on channel u

| u(x).P receive term from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (n)P restrict name n to process P

Let u range over

names and variables}

Modeling Secrecy with Scoping

A sends M to B over secure channel c

A(M) = cM

B = c(x).nil

P(M) = (c)(A(M)|B)

A B
M

channel c

This restriction ensures that channel c is
“invisible” to any process except A and B
(other processes don’t know name c)

-

Secrecy as Equivalence

P(M) and P(M’) are “equivalent” for any values of M

and M’

• No attacker can distinguish P(M) and P(M’)

Different notions of “equivalence”

• Testing equivalence or observational congruence

• Indistinguishability by any probabilistic polynomial-time
Turing machine

A(M) = cM

B = c(x).nil

P(M) = (c)(A(M)|B)

Without (c), attacker could run
process c(x) and tell the difference
between P(M) and P(M’)

-

Another Formulation of Secrecy

No attacker can learn name n from P(n)

• Let Q be an arbitrary attacker process, and
suppose it runs in parallel with P(n)

• For any process Q in which n does not
occur free, P(n) | Q will never output n

A(M) = cM

B = c(x).nil

P(M) = (c)(A(M)|B)

-

FINE

