Security in Process Calculi

Service Oriented Architectures

Module 1 - Basic technologies

Ernesto Damiani

Universita degli Studi di Milano

Overview

Pi calculus

e Core language for parallel programming

e Modeling security via name scoping
Applied pi calculus

e Modeling cryptographic primitives with

functions and equational theories

e Equivalence-based notions of security

e A little bit of operational semantics

e Security as testing equivalence

Pi Calculus
[Milner et al.]

Fundamental language for concurrent systems

e High-level mathematical model of parallel processes
e The “core” of concurrent programming languages

e By comparison, lambda-calculus is the “core” of functional
programming languages

Mobility is a basic primitive

e Basic computational step is the transfer of a
communication link between two processes

e Interconnections between processes change as they
communicate

Can be used as a general programming language

A Little Bit of History

1980: Calculus of Communicating Systems (CCS) [Milner]

1992: Pi Calculus [Milner, Parrow, Walker]
e Ability to pass channel names between processes
1998: Spi Calculus [Abadi, Gordon]
e Adds cryptographic primitives to pi calculus
e Security modeled as scoping
e Equivalence-based specification of security properties
e Connection with computational models of cryptography
2001: Applied Pi Calculus [Abadi, Fournet]

e Generic functions, including crypto primitives

Pi Calculus Syntax

Terms
e M,N ::= X variables } Let u range over
| n names names and variables
Processes
e PQ ::= nil empty process
U(N).P send term N on channel u
u (X) P receive term from channel P and assign to x
P replicate process P
P | Q run processes P and Q in parallel
(vn)P restrict name n to process P

Modeling Secrecy with Scoping

A sends M to B over secure channel c

()
channel ¢

A (M) = &(M)
B = c¢c(x).nil
P(M) = (vc) (A(M) [B)
\‘ This restriction ensures that channel c is

“invisible” to any process except A and B
(other processes don’t know name c)

Secrecy as Equivalence

_ Without (vc), attacker could run

A (M) — C<M> process c(x) and tell the difference
B -~ - (o) n l 1 between P(M) and P(M")
) 7
P (M) = (A (M) |B)

P(M) and P(M’) are “"equivalent” for any values of M
and M’

e No attacker can distinguish P(M) and P(M’)
Different notions of “equivalence”

e Testing equivalence or observational congruence

e Indistinguishability by any probabilistic polynomial-time
Turing machine

Another Formulation of Secrecy

A (M) = (M)
B = c(x).nil
P(M) = (vc) (A(M) [B)

No attacker can learn name n from P(n)

e Let Q be an arbitrary attacker process, and
suppose it runs in parallel with P(n)

& FINE ~»
~N - ;‘ .24’4’A
v ! v
’:430' *333e

e

