Lesson 14 — SOA with REST (Part 1)

Ernesto Damiani

Universita di Milano

HTML

Web Sites (1992)

HTTP

WS-* Web Services (2000)

SOAP
XML
(HTTP)

RESTful Web Services (2007)

WADL

Web
—— HTTP Server

NOSI
TWX-Od

WS-* Web Services (2000)

SOAP
XML
(HTTP)

Where do Web services come from?

e Address the problem of enterprise software
standardization

e Enterprise Computing Standards for Interoperability
(WS started 2001)

e A layered architecture with a variety of messaging,
description and discovery specifications

e Do things from the ground up, quickly, in well
factored, distinct, tightly focused specifications

e Tools will hide the complexity

Dealing with Heterogeneity (1)

e Web Applications

Dealing with Heterogeneity (2)

e Enterprise Computing

CICS
IMS |

Big Web Services (1)

e High perceived complexity

e Problematic standardization process
— Infighting
— Lack of architectural coherence
— Fragmentation
— Design by committee
— Feature Bloat (Merge of competing specs)
— Lack of reference implementations
— Standardization of standards (WS-1)

Big Web Services (2)

e |Is this starting to look like CORBA?

e When will Web services interoperability start to
really work?

e Do we really have to buy XML appliances to get
good performance?

WS-PageCount

Messaging 232 pages
Metadata 111 pages
Security 230 pages
WS-BPEL 195 pages
XML/XSD 099 pages
Transactions 39 pages }

REpresentational State Transfer

e REST (REepresentational State Transfer) defines
the architectural style of the Web

e Its four principles can explain the success and the
scalability of the HTTP protocol implementing them

1.
2.

Resource ldentification through URI

Uniform Interface for all resources:

= GET (Query the state, idempotent, can be cached)
= POST (Create a child resource)

= PUT (Update, transfer a new state)

» DELETE (Delete a resource)

. “Self-Describing” Messages through Meta-Data and

multiple resource representations

Hyperlinks to define the application state transitions and
relationships between resources

RESTful Web Service Example

HTTP Client Web Server Database

(Web Browser) —_— R

SELECT *

GET /book?ISBN=222 FROM books
" WHERE isbn=222 —»

s

POST /order h INSERT
INTO orders g

§O1 Location: /order/612

PUT /order/612 UPDATE orders
*» | WHERE id=612|

Uniform Interface Principle (CRUD

Example)
CRUD REST
Create a
CREATE || POST : sub resource
Retrieve the current
READ GET 2 state of the resource
Initialize or update the
UPDATE | IPUT g state of a resource

at the given URI

Clear a resource,
DELETE ||DELETE || after the URIis no

longer valid

Uniform Resource Identifier

e Internet Standard for resource naming and
Identification (originally from 1994, revised until 2005)

e Examples:

http:/itools.ietf.org/html/rfc398

A ! A
~y - ~

A
URI Scheme Authority Path
https:/lwww.google.ch/search?q=rest&start=10#1

. W,

QJ;ry Fragment

e REST does not advocate the use of “nice” URIs

e In most HTTP stacks URIs (Uniform Resource
Identifiers) cannot have arbitrary length (4Kb)

URI1 Design Guidelines

e Prefer Nouns to Verbs
e Keep your URIs short

e Follow a “positional” parameter passing scheme
(instead of the key=value&p=v encoding)

e URI postfixes can be used to specify the content type
e Do not change URIs

e Use redirection if you really need to change them

High REST vs. Low REST

Best practices differ:

e High REST
— Usage of “nice” URIs recommended
— Full use of the 4 verbs: GET, POST, PUT, and DELETE
— Responses using Plain Old XML

e Low REST

— HTTP GET for idempotent requests, POST for everything
else

— Responses in any MIME Type (e.g., XHTML)

Resource Representation Formats:
XML vs. JSON (1)

XML

— PO-XML

— SOAP (WS-%*)
— RSS, ATOM

e Standard textual syntax for semi-structured data

e Many tools available:
— XML Schema, DOM, SAX, XPath, XSLT, XQuery

e Everyone can parse it (not necessarily understand it)

e Slow and Verbose

Resource Representation Formats:
XML vs. JSON (2)

JSON (JavaScript Object Notation)

e Wire format introduced for AJAX Web applications
(Browser-Web Server communication)

e Textual syntax for serialization of non-recurrent
data structures

e Supported in most languages (not only JavaScript)
e Not extensible (does not need to be)
e “JSON has become the X in Ajax”

JSON Example

‘riskReportResponseData”:

{"year": 2000, B
“report”{
"pnlicy’f:::]unt":a-ﬂr,
“totalClaimVvalue™ 279080.37,

Arra “totallnsuredvalue™ 2996932 42,
“claimCount™ 29} —
}

— Object

{"year” 2001,)
“report”{
“policyCount™ 3906,]
"totalClaimValue™125591.37, ~ Object

“totallnsuredValue™ 8. 9236808%e7,

“claimCount™ 31 \. J

™ I \ y N _/
* Y Value
String

REST Strengths (1)

e Simplicity

— Uniform interface is immutable (no problem of breaking
clients)

« HTTP/POX Is ubiquitous (goes through firewalls)
e Stateless/Synchronous interaction

e Proven scalability

— “after all the Web works”, caching, clustered server farms
for QoS

REST Strengths (2)

e Perceived ease of adoption (light infrastructure)

— just need a browser to get started - no need to buy WS-*
middleware

e Grassroots approach

e Leveraged by all major Web 2.0 applications

— 85% clients prefer Amazon RESTful API
— Google does no longer support its SOAP/WSDL API

REST Weaknesses (1)

e Confusion (high REST vs. low REST)

— Is it really 4 verbs? (HTTP 1.1. has 8 verbs: HEAD, GET,
POST, PUT, DELETE, TRACE, OPTIONS, and CONNECT)

e Mapping REST-style synchronous semantics on top
of back end systems creates design mismatches
(when they are based on asynchronous messaging
or event driven interaction)

e Cannot deliver enterprise-style “-ilities” beyond
HTTP/SSL

REST Weaknesses (2)

e Challenging to identify and locate resources
appropriately in all applications

e Apparent lack of standards (other than URI, HTTP,
XML, MIME, HTML)

e Semantics/Syntax description very informal
(user/human oriented)

4.

RESTful Web Services Design
Methodology (1)

Identify resources to be exposed as services
(e.q., yearly risk report, book catalog, purchase
order, open bugs, polls and votes)

Define “nice” URLs to address them

Understand what it means to do a GET, POST,
PUT, DELETE on a given resource URI

Design and document resource representations

D.

6.

RESTful Web Services Design
Methodology (2)

Model relationships (e.g., containment, reference,
state transitions) between resources with
hyperlinks that can be followed to get more
details (or perform state transitions)

Implement and deploy on Web server

RESTful Web Services Design
Methodology (3)

7. Test with a Web browser

150d
313130

Gy | ©

m | &

— |
/loan
/balance X | X | X
/client ?
/hook
lorder ? ?

/soap X | X X

Simple Doodle API Example (1)

- Creating a poll (transfer the state of a new poll on
the Doodle service)

il
:I:_—_—_—_—_—_::iif === '_%:_________—_—_f::’ :5—_—_‘:_’1:

GET /pol1/090331x

POST /poll
<options>A,B,C</options>

200 oK
201 Created <options>A,B,C</options>

Location: /pol1,/090331x

e Reading a poll (transfer the state of the poll from
the Doodle service)

Simple Doodle API Example (2)

- Participating in a poll by creating a new vote sub-
resource

POST /pol11/090331x/vote GET /pol1/090331x

<name>C. Pautasso</name>

<choice>B</choice> 200 oK
<options>A,B,C</options>
201 Created <votes><vote id=“1">
Location: <name>C. Pautasso</name>
/po11/090331x/vote/1 <choice>B</choice>

</vote></votes>

Simple Doodle API Example (3)

e EXisting votes can be updated (access control

headers not shown)

PUT /po11/090331x/v0te/1

<name>C. Pautasso</name>
<choice>C</choice>

200 oK

—_

GET /po11/09033lx

200 oK

<options>A,B,C</options>
<votes><vote id="/1">
<name>C. Pautasso</name>
<choice>C</choice>
</vote></votes>

Simple Doodle API Exampl

e Polls can be deleted once a decision has been
made

e _
3
b
DELETE /po11/090331x GET /pol1/090331x
200 oK 404 Not Found

e (4)

