
Service Oriented Architectures 

Module 3 - Resource-oriented services

Unit 1 – REST

Ernesto Damiani

Università di Milano

Lesson 14 – SOA with REST (Part I)



Web Sites (1992)



WS-* Web Services (2000)



RESTful Web Services (2007)



WS-* Web Services (2000)



Where do Web services come from?

• Address the problem of enterprise software 
standardization

• Enterprise Computing Standards for Interoperability 
(WS started 2001)

• A layered architecture with a variety of messaging, 
description and discovery specifications

• Do things from the ground up, quickly, in well 
factored, distinct, tightly focused specifications

• Tools will hide the complexity



Dealing with Heterogeneity (1)

• Web Applications



Dealing with Heterogeneity (2)

• Enterprise Computing



Big Web Services (1)

• High perceived complexity

• Problematic standardization process
– Infighting

– Lack of architectural coherence

– Fragmentation

– Design by committee

– Feature Bloat (Merge of competing specs)

– Lack of reference implementations

– Standardization of standards (WS-I)



Big Web Services (2)

• Is this starting to look like CORBA?

• When will Web services interoperability start to 
really work?

• Do we really have to buy XML appliances to get 
good performance?



REpresentational State Transfer

• REST (REepresentational State Transfer) defines 
the architectural style of the Web

• Its four principles can explain the success and the 
scalability of the HTTP protocol implementing them

1. Resource Identification through URI
2. Uniform Interface for all resources:

GET (Query the state, idempotent, can be cached)

POST (Create a child resource)

PUT (Update, transfer a new state)

DELETE (Delete a resource)

3. “Self-Describing” Messages through Meta-Data and 
multiple resource representations

4. Hyperlinks to define the application state transitions and 
relationships between resources



RESTful Web Service Example



Uniform Interface Principle (CRUD 
Example)



Uniform Resource Identifier

• Internet Standard for resource naming and 
identification (originally from 1994, revised until 2005)

• Examples:

• REST does not advocate the use of “nice” URIs

• In most HTTP stacks URIs (Uniform Resource 
Identifiers) cannot have arbitrary length (4Kb)



URI Design Guidelines

• Prefer Nouns to Verbs

• Keep your URIs short

• Follow a “positional” parameter passing scheme 
(instead of the key=value&p=v encoding)

• URI postfixes can be used to specify the content type

• Do not change URIs

• Use redirection if you really need to change them



High REST vs. Low REST

Best practices differ:

• High REST
– Usage of “nice” URIs recommended

– Full use of the 4 verbs: GET, POST, PUT, and DELETE

– Responses using Plain Old XML

• Low REST
– HTTP GET for idempotent requests, POST for everything 
else

– Responses in any MIME Type (e.g., XHTML)



Resource Representation Formats:
XML vs. JSON (1)

XML
– PO-XML

– SOAP (WS-*)

– RSS, ATOM

• Standard textual syntax for semi-structured data

• Many tools available:
– XML Schema, DOM, SAX, XPath, XSLT, XQuery

• Everyone can parse it (not necessarily understand it)

• Slow and Verbose



Resource Representation Formats:
XML vs. JSON (2)

JSON (JavaScript Object Notation)

• Wire format introduced for AJAX Web applications 
(Browser-Web Server communication)

• Textual syntax for serialization of non-recurrent 
data structures

• Supported in most languages (not only JavaScript)

• Not extensible (does not need to be)

• “JSON has become the X in Ajax”



JSON Example



REST Strengths (1)

• Simplicity
– Uniform interface is immutable (no problem of breaking 

clients)

• HTTP/POX is ubiquitous (goes through firewalls)

• Stateless/Synchronous interaction

• Proven scalability
– “after all the Web works”, caching, clustered server farms 

for QoS



REST Strengths (2)

• Perceived ease of adoption (light infrastructure)
– just need a browser to get started - no need to buy WS-* 

middleware

• Grassroots approach

• Leveraged by all major Web 2.0 applications
– 85% clients prefer Amazon RESTful API 

– Google does no longer support its SOAP/WSDL API



REST Weaknesses (1)

• Confusion (high REST vs. low REST)
– Is it really 4 verbs? (HTTP 1.1. has 8 verbs: HEAD, GET, 

POST, PUT, DELETE, TRACE, OPTIONS, and CONNECT)

• Mapping REST-style synchronous semantics on top 
of back end systems creates design mismatches 
(when they are based on asynchronous messaging 
or event driven interaction)

• Cannot deliver enterprise-style “-ilities” beyond 
HTTP/SSL



REST Weaknesses (2)

• Challenging to identify and locate resources 
appropriately in all applications

• Apparent lack of standards (other than URI, HTTP, 
XML, MIME, HTML)

• Semantics/Syntax description very informal 
(user/human oriented)



RESTful Web Services Design 
Methodology (1)

1. Identify resources to be exposed as services 
(e.g., yearly risk report, book catalog, purchase 
order, open bugs, polls and votes)

2. Define “nice” URLs to address them

3. Understand what it means to do a GET, POST, 
PUT, DELETE on a given resource URI

4. Design and document resource representations



RESTful Web Services Design 
Methodology (2)

5. Model relationships (e.g., containment, reference, 
state transitions) between resources with 
hyperlinks that can be followed to get more 
details (or perform state transitions)

6. Implement and deploy on Web server



RESTful Web Services Design 
Methodology (3)

7. Test with a Web browser



Simple Doodle API Example (1)

• Creating a poll (transfer the state of a new poll on 
the Doodle service)

• Reading a poll (transfer the state of the poll from 
the Doodle service)



Simple Doodle API Example (2)

• Participating in a poll by creating a new vote sub-
resource



Simple Doodle API Example (3)

• Existing votes can be updated (access control 
headers not shown)



Simple Doodle API Example (4)

• Polls can be deleted once a decision has been 
made

FINE


