Lesson 15 — SOA with REST
(Part 11)

Ernesto Damiani

Universita di Milano

REST Design Tips

1. Understanding GET vs. POST vs. PUT

2. Multiple Representations
— Content-Type Negotiation

3. Exception Handling

— ldempotent vs. Unsafe

POST vs. GET

e GET iIs a read-only operation. It can be repeated
without affecting the state of the resource
(idempotent) and can be cached

e POST Is a read-write operation and may change
the state of the resource and provoke side effects
on the server

— Web browsers warn you when refreshing a page generated
with POST

POST vs. PUT

What is the right way of creating resources
(initialize their state)?

PUT /resource/{id}

e Problem: How to ensure resource {id} is unique?
— (Resources can be created by multiple clients concurrently)

POST /resource
201 Created
Location: /resource/{id}

e Solution: let the server compute the unigue id

Content Negotation (Connegq)

Negotiating the message format does not
require to send more messages

GET /resource

Accept: text/html, application/xml,
application/json

1. The client lists the set of format (MIME types) that
It understands

200 OK
Content-Type: application/json

2.The server chooses the most appropriate one for
the reply

Forced Content Negotiation

- The generic URI supports content negotiation

GET /resource

Accept: text/html, application/xml,
application/json

- The specific URI points to a specific representation
format using the postfix

GET /resource.html
GET /resource.xml
GET /resource.json

— Warning: This is a conventional “best practice” (not a
standard)

Exception Handling

Learn to use HTTP Standard Status Codes 200 Internal server £rror

100
200
201
202
203
204
205
206
300
301
302
303
304
305
307

Continue

OK

Created

Accepted
Non-Authoritative
No Content

FReset Content
Partial Content
Multiple Choices
Moved Permanently
Found

See Other

Not Modified

Use Proxy
Temporary Redirect

—

dxx Client's fault

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

501 Not Implemented
502 Bad Gateway

Bad Rﬁqu?atd 503 |Service Unavailable
Unauthorized g 504 Gateway Timeout

Payment Required | cos yr7p version Not Supported
Forbidden

Not Found Exx Server's fault

Method Not Allowed

Not Acceptable

Proxy Authentication Required
Request Timeout

Conflict

Gone

Length Required

Precondition Failed

Request Entity Too Large
Request-URI Too Long
Unsupported Media Type
Requested Range Not Satisfiable
Expectation Failed

Ildempotent vs. Unsafe (1)

- ldempotent requests can be processed multiple
times without side effects (the state of the server
does not change)

GET /book
PUT /order/x
DELETE /order/y

- If something goes wrong (server down, server
Internal error), the request can be simply replayed
until the server is back up again

Ildempotent vs. Unsafe (2)

e Unsafe requests modify the state of the server
and cannot be repeated without further effects:

withdraw(2008) //unsafe
Deposit(200%) //unsafe

- Unsafe requests require special handling in case of
exceptional situations (e.g., state reconciliation)

POST /order/x/payment

e In some cases the API can be redesigned to use
iIdempotent operations:

B = GetBalance() //safe
B =B + 200% //Tocal
SetBalance(B) //safe

Comparing WS-* vs. REST?

WS-* REST

Middleware
Interoperability
Standards

Architectural
style for
the Web

RESTful Web Application: example

HTTP Client Web Server _ Database

(Web Browser) — R

SELECT *

GET /book?ISBN=222 FROM books
" WHERE isbn=222 ||

PUT /order INSERT

-
301 Location: /order/612 INTO orders |

POST /order/612 UPDATE orders
*__ | WHERE id=612 |,

Web Service Example (from REST

perspective)
| Web Service
HTTP Client Web Server
Implementation
(Stub Object)
POST /soap/router

» | return getBook(222)

POST /soap/router

» | return new Order()

POST /soap/router

» | order.setCustomer(x)

Main difference: REST vs. SOAP (1)

e “The Web is the universe of globally accessible
iInformation” (Tim Berners Lee)

— Applications should publish their data on the Web
(through URI)

POX (Plain Old XML)

HTTP||HTTP|[HTTP|/HTTP
GET ||POST|| PUT || DEL

Resource URI

Application

Main difference: REST vs. SOAP (2)

e “The Web is the universal transport for messages”

— Applications get a chance to interact but they remain
“outside of the Web”

SOAP (WS-*)

HTTP

SMTP POST MQ...

Endpoint URI

Application

REST as a connector

B el

Stream

-

File Transfer

b

Shared Data

[[
N I
L ¥
Remote Procedure Call I
Message Bus
Events

=
SR

REpresentational
State Transfer

Stateless or Stateful?

e REST provides explicit state transitions
— Communication is stateless

— Resources contain data and links representing valid state
transitions

— Clients maintain state correctly by following links in generic
manner

e Techniques for adding session to HTTP:
— Cookies (HTTP Headers)
— URL Re-writing
— Hidden Form Fields

What about service description?

e REST relies on human readable documentation that
defines requests URIs and responses (XML, JSON)

e Interacting with the service means hours of testing
and debugging URIs manually built as parameter
combinations. (Is it really that simpler building URIs
by hand?)

e Why do we need strongly typed SOAP messages if
both sides already agree on the content?

e WADL proposed Nov. 2006

e XML Forms enough?

What about security? (1)

e REST security is all about HTTPS
e Proven track record (SSL1.0 from 1994)

e Secure, point to point communication
(Authentication, Integrity and Encryption)

What about security? (2)

e SOAP security extensions defined by WS-Security
(from 2004)

e XML Encryption (2002)
e XML Signature (2001)

e Implementations are starting to appear now

— Full interoperability moot
— Performance?

e Secure, end-to-end communication — Self-
protecting SOAP messages (does not require HTTPS)

What about asynchronous reliable
messaging? (1)

e Although HTTP Is a synchronous protocol, it can
be used to “simulate” a message queue

POST /queue

202 Accepted

Location:
J/queue/message,/1230213

GET /queue/message/1230213

DELETE
/queue /message,/1230213

What about asynchronous reliable
messaging? (2)

e SOAP messages can be transferred using
asynchronous transport protocols and APIs (like JMS,

MQ, ...)

e WS-Addressing can be used to define transport-
iIndependent endpoint references

e WS-ReliableExchange defines a protocol for reliable
message delivery based on SOAP headers for
message identification and acknowledgement

SOAP and REST

e RESTafarians would like Web services to use and
not to abuse the architecture of the Web

e \Web Services more valuable when accessible from
the Web

e Web more valuable when Web Services are a part
of it

e W3C Workshop on Web of Services for Enterprise
Computing, 27-28 February 2007 — with IBM, HP,
BEA, IONA, Yahoo, Sonic, Redhat/JBoss, WSO2,
Xerox, BT, Coactus Consulting, Progress Software,
and others

REST and SOAP Similarities

e Existing Web applications can gracefully support
both traditional Web clients (HTML/POX) and SOAP
clients in a RESTful manner

 MIME Type: application/soap-xml

e SOAP with document/literal style not so different
from REST (or at least HTTP/POX) - apart from the
GET/POST misuse and the extra

<envelope><header><body> tags in the payload

Debunking the Myth (1)

e Many “RESTafarians” have taken the position that
REST and Web services are somehow incompatible
with one another

e Fact: recent versions of SOAP and WSDL have been
designed specifically to enable more RESTful use of
Web services

 SOAP1.2
— SOAP1.2 Response MEP
— Web Method

Debunking the Myth (2)

« WSDL2.0

— HTTP binding permits assigning verbs (GET, POST, etc.) on
a per-operation basis

— Attribute to mark an operation as safe (and thus cacheable)

e Unfortunately, the implementations of Web
services runtimes and tooling have made RESTful
use of Web services difficult

Conclusion and Outlook (1)

e Service-Oriented Architecture can be implemented
In different ways

e You should generally focus on whatever
architecture gets the job done and recognize the
significant value of open standards but try to avoid
being religious about any specific architectures or
technologies

e The right steps have been taken in the
development of some of the more recent WS-*
specifications to enable this vision to become reality

Conclusion and Outlook (2)

e SOAP and the family of WS-* specifications have
their strengths and weaknesses and will be highly
suitable to some applications and positively terrible
for others. Likewise with REST. The decision of which
to use depends entirely on the circumstances of the
application

e In the near future there will be a single scalable
middleware stack, offering the best of the Web in
simple scenarios, and scaling gracefully with the
addition of optional extensions when more robust
quality of service features are required

References

Leonard Richardson, Sam Ruby, RESTful Web Services, O'Reilly, May 2007

Roy Fielding, Architectural Styles and the Design of Network-based Software
Architectures, University of California, Irvine, 2000, Chapter 5
hitp://roy.gbiv.com/pubs/dissertation/fielding disseration. pdf

W3C Workshop on Web of Services for Enterprise Computing,

27-28 February 2007 htip/fwww w3 org/2007/01/wos-ec-program_html

sun, JSR311 - Java APl for RESTful Web Services
http://icp.ora/en/|sr/detail 7id=311

Marc J. Hadley (Sun), Web Application Description Language (WADL)
hitps.//wadl.dev |ava.net/

Thomas Bayer, REST Web Services — Eine Einfuehrung (November 2002)
hitp:/fwww_oio_de/public/xmlrest-webservices_pdf

Michi Henning, The Rise and Fall of CORBA, Component Technologies, Vol. 4. No. 5,
June 2006

Stefan Tilkov, REST Fatterns and Antipatterns, JAOO 2008

Cesare Pautasso, Erik Wilde, From SOA to REST. WWW 2009 Tutonal

Jacob Nielsen, URI are Ul hitp://'www.useit.com/alertbox/990321.himl

Douglas Crockford, JSON - the fat-free alternative to XML, XML 2006.

Cesare Pautasso, Olaf Zimmermann, Frank Leymann, RESTful Web Services vs. Big
Web Services: Making the Right Architectural Decision, 17th International World
Wide Web Conference (WWW2008), Bejing,China, April 2008.

hitp//lwww_jopera.org/docs/publications/2008/restws

&FINE

-l
&

o
"m

