
Service Oriented Architectures 

Module 3 - Resource-oriented services

Unit 1 – REST

Ernesto Damiani

Università di Milano

Lesson 15 – SOA with REST 
(Part II)



REST Design Tips

1. Understanding GET vs. POST vs. PUT

2. Multiple Representations
– Content-Type Negotiation

3. Exception Handling
– Idempotent vs. Unsafe



POST vs. GET

• GET is a read-only operation. It can be repeated 
without affecting the state of the resource 
(idempotent) and can be cached

• POST is a read-write operation and may change 
the state of the resource and provoke side effects 
on the server

– Web browsers warn you when refreshing a page generated 
with POST



POST vs. PUT

What is the right way of creating resources 
(initialize their state)?

• Problem: How to ensure resource {id} is unique?
– (Resources can be created by multiple clients concurrently)

• Solution: let the server compute the unique id



Content Negotation (Conneg)

Negotiating the message format does not 
require to send more messages

1.The client lists the set of format (MIME types) that 
it understands

2.The server chooses the most appropriate one for 
the reply



Forced Content Negotiation

• The generic URI supports content negotiation

• The specific URI points to a specific representation 
format using the postfix

– Warning: This is a conventional “best practice” (not a 
standard)



Exception Handling



Idempotent vs. Unsafe (1)

• Idempotent requests can be processed multiple 
times without side effects (the state of the server 
does not change)

• If something goes wrong (server down, server 
internal error), the request can be simply replayed 
until the server is back up again



Idempotent vs. Unsafe (2)

• Unsafe requests modify the state of the server 
and cannot be repeated without further effects:

• Unsafe requests require special handling in case of 
exceptional situations (e.g., state reconciliation)

• In some cases the API can be redesigned to use 
idempotent operations:



Comparing WS-* vs. REST?



RESTful Web Application: example



Web Service Example (from REST 
perspective)



Main difference: REST vs. SOAP (1)

• “The Web is the universe of globally accessible 
information” (Tim Berners Lee)

– Applications should publish their data on the Web 
(through URI)



Main difference: REST vs. SOAP (2)

• “The Web is the universal transport for messages”
– Applications get a chance to interact but they remain 

“outside of the Web”



REST as a connector



Stateless or Stateful?

• REST provides explicit state transitions
– Communication is stateless

– Resources contain data and links representing valid state 
transitions

– Clients maintain state correctly by following links in generic 
manner

• Techniques for adding session to HTTP:
– Cookies (HTTP Headers)

– URL Re-writing

– Hidden Form Fields



What about service description?

• REST relies on human readable documentation that 
defines requests URIs and responses (XML, JSON)

• Interacting with the service means hours of testing 
and debugging URIs manually built as parameter 
combinations. (Is it really that simpler building URIs
by hand?)

• Why do we need strongly typed SOAP messages if 
both sides already agree on the content?

• WADL proposed Nov. 2006

• XML Forms enough?



What about security? (1)

• REST security is all about HTTPS

• Proven track record (SSL1.0 from 1994)

• Secure, point to point communication 
(Authentication, Integrity and Encryption)



What about security? (2)

• SOAP security extensions defined by WS-Security 
(from 2004)

• XML Encryption (2002)

• XML Signature (2001)

• Implementations are starting to appear now
– Full interoperability moot

– Performance?

• Secure, end-to-end communication – Self-
protecting SOAP messages (does not require HTTPS)



What about asynchronous reliable 
messaging? (1)

• Although HTTP is a synchronous protocol, it can 
be used to “simulate” a message queue



What about asynchronous reliable 
messaging? (2)

• SOAP messages can be transferred using 
asynchronous transport protocols and APIs (like JMS, 
MQ, …)

• WS-Addressing can be used to define transport-
independent endpoint references

• WS-ReliableExchange defines a protocol for reliable 
message delivery based on SOAP headers for 
message identification and acknowledgement



SOAP and REST

• RESTafarians would like Web services to use and 
not to abuse the architecture of the Web

• Web Services more valuable when accessible from 
the Web

• Web more valuable when Web Services are a part 
of it

• W3C Workshop on Web of Services for Enterprise 
Computing, 27-28 February 2007 – with IBM, HP, 
BEA, IONA, Yahoo, Sonic, Redhat/JBoss, WSO2, 
Xerox, BT, Coactus Consulting, Progress Software, 
and others



REST and SOAP Similarities

• Existing Web applications can gracefully support 
both traditional Web clients (HTML/POX) and SOAP 
clients in a RESTful manner

• MIME Type: application/soap-xml

• SOAP with document/literal style not so different 
from REST (or at least HTTP/POX) - apart from the 
GET/POST misuse and the extra 
<envelope><header><body> tags in the payload



Debunking the Myth (1)

• Many “RESTafarians” have taken the position that 
REST and Web services are somehow incompatible 
with one another

• Fact: recent versions of SOAP and WSDL have been 
designed specifically to enable more RESTful use of 
Web services

• SOAP1.2
– SOAP1.2 Response MEP

– Web Method



Debunking the Myth (2)

• WSDL2.0
– HTTP binding permits assigning verbs (GET, POST, etc.) on 

a per-operation basis

– Attribute to mark an operation as safe (and thus cacheable)

• Unfortunately, the implementations of Web 
services runtimes and tooling have made RESTful 
use of Web services difficult



Conclusion and Outlook (1)

• Service-Oriented Architecture can be implemented 
in different ways

• You should generally focus on whatever 
architecture gets the job done and recognize the 
significant value of open standards but try to avoid 
being religious about any specific architectures or 
technologies

• The right steps have been taken in the 
development of some of the more recent WS-* 
specifications to enable this vision to become reality



Conclusion and Outlook (2)

• SOAP and the family of WS-* specifications have 
their strengths and weaknesses and will be highly 
suitable to some applications and positively terrible 
for others. Likewise with REST. The decision of which 
to use depends entirely on the circumstances of the 
application

• In the near future there will be a single scalable 
middleware stack, offering the best of the Web in 
simple scenarios, and scaling gracefully with the 
addition of optional extensions when more robust 
quality of service features are required



References

FINE


