Lesson 16 — A Practical SOA
Example

Ernesto Damiani

Universita di Milano

XTream — SOA Driven to the Extreme

e Runtime platform and model for highly distributed,
pervasive data stream processing

e Built on top of OSGi

e Extensive use of services

— Interaction between components of XTream

— external, predefined services (R-OSGi, Configuration
Admin, Logging, etc.)

Stream Processing in a Nutshell (1)

e Traditional RDBMS

— store data before processing
— data is “static”
— queries come and go

queries results

"‘\._____‘}

updates Pz

processing

Stream Processing in a Nutshell (2)

e Stream processing
— process data immediately at arrival
— queries are “static”
— data comes and goes

input
streams

H‘ push processing results

b

optional: ‘6 storage access

“Traditional” Streaming Applications (1)

e Network monitoring
— Intrusion detection
— load monitoring

e Financial markets

— quote updates
— automatic trading

e Military

“Traditional” Streaming Applications (2)

 Well-defined application boundaries
e Logically centralized orchestration

e “Classic” requirements

— low latency
— high throughput

Highly Distributed Pervasive Data
Stream Processing

e Federation of large number of heterogeneous,
Independent, autonomous, and widely distributed
sources, sinks, and processors into a highly dynamic,
loosely coupled mesh

e Primary foci differ from those of traditional stream
processing

— handle dynamism imposed by autonomy of entities
— ensure privacy, confidentiality, and integrity of data

Processing and Exchanging Personal
Information Streams

e Main motivation for XTream project

e Perfect instance of “highly distributed pervasive
data stream processing”

— covers technical properties and challenges

— matches primary foci

— strikingly simple

— applicable to millions’ of people every day life

The Past

e Advances in networking, computing, and devices

e Proliferation of data sources

— media (photos, video clips)
— text (e-mail, blog entries, chat messages)
— machine-generated data (sensor data, notifications)

e Possibility to access data sources from anywhere
and at any time

Challenges

e Buffering of data

e Processing of data

e Distribution and dissemination of data

e Combination and interaction of applications

e Context dependency

The Present

e Custom solutions (standalone programs)
e Heavy engines (data base and stream engines)
 Web 2.0

— sharing of media (e.g., Flickr, YouTube)
— exchange of text (e.g., webmail, browser chats)

— use of machine-generated data (e.g., Google calendar, RSS
weather feed)

— mashups

Issues

e Scalability (centralized infrastructure of Web 2.0)

— more and more content created
— Interest for particular data restricted to small group

e Programmability
— HTTP / web app model not designed for push
— limited extensibility

e Privacy concerns

The Future

e An open and extensible platform that enables

— everyday users to easily process personal information
— groups of users to easily exchange information
— developers to write extensible, interoperable apps

e A programming model that supports and deals
with dynamic changes

e Direct commmunication between nodes

XTream

e Generalize data stream processing model

Sink

Source 1 Sink

o

slets (streamlets)

Generalizing the Data Stream
Processing Model

e Treat personal information as data streams

— new e-mails arriving
— chat messages

e Integrate push and pull into slets and channels
e That’s all nice, but where’s the link to SOA...

Services Ahead: Implementation Model

Channel

1M

Slet

. SletMain .m.ﬂ Impl. Classes @ OutputPort © InputPort M0 Buffer I Service

Implementation Model

e |Loosely coupled components

— Interact with each other through services
— can come and go at any time

e Connectors added as indirection

— between slets and channels
— entity in the model that covers communication

Programming Abstraction

Abstraction provided by —
. . . ot =
application builder . =

Data Processing Model

Implementation Model

Qg b¢1 y
Implementation F ..53 .1 @

Use Case: SkypeMail (1)

- Display e-mails exchanged with caller

e Plain and distinct application that covers a set of
key challenges

— heterogeneous data

— push / pull

— event-triggered

— processing

— reusability

Use Case: SkypeMail (2)

Skype [
*-

Phone
Call Mail

Mail Sink

R

]
¥
Mail
Chent

IMAF g
S8rver

Use Case: Photo Exchange

- Exchange recently taken photos with friends
— each user accesses them in a different manner
— aggregation of different photo feeds
— Independent computing systems

The Big Picture (1)

e Mandatory

— Java VM, OSGi runtime
— Config Admin, Log svc.
— XT-base bundles

e Optional
— XT-administrative bundles
— XT-remote bundle
— Controllers

The Big Picture (2)

sets of bundles

1 A [1] |

|ocal controller

XT-administrative
XT-base XT-remote
Config Admin | Log R-OS5Gi

O5Gi

Java VM

XTream Base Bundles (1/2)

e Mandatory for operation

— Core
= exports common APl (item container, channel interfaces, etc.)
* helper methods
= library bundle
— Slet
= exports slet API for concrete slet implementation bundles
» implementation of common code: input and output ports
» library bundle

XTream Base Bundles (2/2)

e Channel

— provides implementations of XTream channels

— registers a ManagedServiceFactory service to receive
configuration

— data for channels

e Connector

— provides implementations of local XTream connectors

— registers a ManagedServiceFactory service to receive
configuration data for connectors

XTream Administrative
Bundles

e Optional, can be loaded and unloaded at runtime
— Monitoring
» exports API for clients that monitor an XTream system
» tracks clients and notifies them of changes
— Management

» exports API for clients that manage an XTream system

» provides services for installing slet implementations,
creating instances of slets or channels, wiring slets to
channels, etc.

Slet Implementations

e Provide the actual functionality of an slet

e Implement slet APl exported by slet bundle

e Plain JARs with one mandatory manifest entry:
e SletMain Class (hame of slet main class)

e Multiple instances of the same type of slet can be
created

XTream Remote Bundle

e Optional, needed for distributed operation
e Uses R-OSGI to communicate with remote peers

e Provides implementation of remote connectors

Local Controller Bundles

e Use monitoring and management bundles to
Interact with the system

— Install slet implementations

— create instances of slets and channels

— connect slets to channels

— parametrize instances of slets

e Can be loaded and unloaded at runtime

The Whiteboard Pattern

e Decouple event listener and event source through
the OSGi service registry

— event listener regqisters itself as service

— event source fetches and calls all listener service when an
event is to be dispatched

e Big plus: no management of (stale?) registrations
e Whitepaper:
http://www.osgi.org/wiki/uploads/Links/whiteboard.
pdf

Whiteboard Example: Monitoring Bundle
and its Clients

e Monitoring bundle exports API for listeners:
SletListener, WiringListener, PortListener, etc.

e Clients implement these interfaces and register the
Implementing class as service

e E.g., If an slet creates an input port the monitoring
bundle fetches all PortListener services and calls
sletCreatedlnputPort(...) on them

Configuration Admin Service

e Persistently saves configuration for services

— for services (service is managing itself)
— for factories (service factories manage services)

e When a managed service or managed service
factory is registered, the Configuration Admin service
passes the persisted configuration to it

e Extensively used in XTream to persist state

Example of Configuration Admin in
XTream: Channels

Elannelhdmin
: 'n.

—

ConfigurationAdmin ManagedServiceFactory

\ /
-"'::reate, reg. create, reg. send reg.
‘ modify, modify, config.
.~del. channels /- del. config.
management bundle Configuration Admin channel bundle
bundle

persist configuration instantiate and register,
to disk update, and unregister

optional § channels

Efficient Implementation of Fully
Dynamic Binding (1/2)

e Use OSGiI service tracker

— proactively tracks and caches services

— retrieve up-to-date array of tracked services (Java objects)
when interacting with other components

— proactive tracking only causes overhead once every time
bindings actually change

— binding between 2 components recorded in one place
» consistency
» performance (length of tracker expression is O(1))

Efficient Implementation of Fully

objectClass = OutputPort
service.ld = 27

xt.cid = port.0

xt.conn = null_cid

objectClass = CICI
service.id = 18
xt.cid = conn.2

objectClass = CICO
service.id = 19
xt.cid = conn.2
xt.chan = chan.7

Tracker exprassmn

Slet ra

objectClass = Elut;futPurt

service.id = 28 -
xt.cid = pod
xt.conn <conn.4d)

Dynamic Binding (2/72)

{(xt.chan

Tracker express

ion:

{&I[nhjectcl.'!

objectClass = CICI
service.id = 31
xt.cid = conn.4

objectClass = CICO
service.id = 32
xt.cid = conn.4
xt.chan = chan.7

objectClass &= Channellnput

service.id _1
xt.cid chan.)

