
Service Oriented Architectures 

Module 3 - Resource-oriented services

Unit 2 – Examples

Ernesto Damiani

Università di Milano

Lesson 16 – A Practical SOA 
Example



XTream – SOA Driven to the Extreme

• Runtime platform and model for highly distributed, 
pervasive data stream processing

• Built on top of OSGi

• Extensive use of services
– interaction between components of XTream

– external, predefined services (R-OSGi, Configuration 
Admin, Logging, etc.)



Stream Processing in a Nutshell (1)

• Traditional RDBMS
– store data before processing

– data is “static”

– queries come and go



Stream Processing in a Nutshell (2)

• Stream processing
– process data immediately at arrival

– queries are “static”

– data comes and goes



“Traditional” Streaming Applications (1)

• Network monitoring
– intrusion detection

– load monitoring

• Financial markets
– quote updates

– automatic trading

• Military



“Traditional” Streaming Applications (2)

• Well-defined application boundaries

• Logically centralized orchestration

• “Classic” requirements
– low latency

– high throughput



Highly Distributed Pervasive Data 
Stream Processing

• Federation of large number of heterogeneous, 
independent, autonomous, and widely distributed 
sources, sinks, and processors into a highly dynamic, 
loosely coupled mesh

• Primary foci differ from those of traditional stream 
processing

– handle dynamism imposed by autonomy of entities

– ensure privacy, confidentiality, and integrity of data



Processing and Exchanging Personal
Information Streams

• Main motivation for XTream project

• Perfect instance of “highly distributed pervasive 
data stream processing”

– covers technical properties and challenges

– matches primary foci

– strikingly simple

– applicable to millions’ of people every day life



The Past

• Advances in networking, computing, and devices

• Proliferation of data sources
– media (photos, video clips)

– text (e-mail, blog entries, chat messages)

– machine-generated data (sensor data, notifications)

• Possibility to access data sources from anywhere 
and at any time



Challenges

• Buffering of data

• Processing of data

• Distribution and dissemination of data

• Combination and interaction of applications

• Context dependency



The Present

• Custom solutions (standalone programs)

• Heavy engines (data base and stream engines)

• Web 2.0
– sharing of media (e.g., Flickr, YouTube)

– exchange of text (e.g., webmail, browser chats)

– use of machine-generated data (e.g., Google calendar, RSS 
weather feed)

– mashups



Issues

• Scalability (centralized infrastructure of Web 2.0)
– more and more content created

– interest for particular data restricted to small group

• Programmability
– HTTP / web app model not designed for push

– limited extensibility

• Privacy concerns



The Future 

• An open and extensible platform that enables
– everyday users to easily process personal information

– groups of users to easily exchange information

– developers to write extensible, interoperable apps

• A programming model that supports and deals 
with dynamic changes

• Direct communication between nodes



XTream

• Generalize data stream processing model



Generalizing the Data Stream 
Processing Model

• Treat personal information as data streams
– new e-mails arriving

– chat messages

– …

• Integrate push and pull into slets and channels

• That’s all nice, but where’s the link to SOA…



Services Ahead: Implementation Model



Implementation Model

• Loosely coupled components
– interact with each other through services

– can come and go at any time

• Connectors added as indirection
– between slets and channels

– entity in the model that covers communication



Programming Abstraction



Use Case: SkypeMail (1)

• Display e-mails exchanged with caller

• Plain and distinct application that covers a set of 
key challenges

– heterogeneous data

– push / pull

– event-triggered

– processing

– reusability



Use Case: SkypeMail (2)



Use Case: Photo Exchange

• Exchange recently taken photos with friends
– each user accesses them in a different manner

– aggregation of different photo feeds

– independent computing systems



The Big Picture (1)

• Mandatory
– Java VM, OSGi runtime

– Config Admin, Log svc.

– XT-base bundles

• Optional
– XT-administrative bundles

– XT-remote bundle

– Controllers



The Big Picture (2)



XTream Base Bundles (1/2)

• Mandatory for operation
– Core

exports common API (item container, channel interfaces, etc.)

helper methods

library bundle

– Slet
exports slet API for concrete slet implementation bundles

implementation of common code: input and output ports

library bundle



XTream Base Bundles (2/2)

• Channel
– provides implementations of XTream channels

– registers a ManagedServiceFactory service to receive 
configuration

– data for channels

• Connector
– provides implementations of local XTream connectors

– registers a ManagedServiceFactory service to receive 
configuration data for connectors



XTream Administrative
Bundles

• Optional, can be loaded and unloaded at runtime
– Monitoring

exports API for clients that monitor an XTream system

tracks clients and notifies them of changes

– Management
exports API for clients that manage an XTream system

provides services for installing slet implementations, 
creating instances of slets or channels, wiring slets to 
channels, etc.



Slet Implementations

• Provide the actual functionality of an slet

• Implement slet API exported by slet bundle

• Plain JARs with one mandatory manifest entry:

• SletMain�Class (name of slet main class)

• Multiple instances of the same type of slet can be 
created



XTream Remote Bundle

• Optional, needed for distributed operation

• Uses R-OSGi to communicate with remote peers

• Provides implementation of remote connectors



Local Controller Bundles

• Use monitoring and management bundles to 
interact with the system

– install slet implementations

– create instances of slets and channels

– connect slets to channels

– parametrize instances of slets

• Can be loaded and unloaded at runtime



The Whiteboard Pattern

• Decouple event listener and event source through 
the OSGi service registry

– event listener registers itself as service

– event source fetches and calls all listener service when an 
event is to be dispatched

• Big plus: no management of (stale?) registrations

• Whitepaper: 
http://www.osgi.org/wiki/uploads/Links/whiteboard.
pdf



Whiteboard Example: Monitoring Bundle 
and its Clients

• Monitoring bundle exports API for listeners: 
SletListener, WiringListener, PortListener, etc.

• Clients implement these interfaces and register the 
implementing class as service

• E.g., if an slet creates an input port the monitoring 
bundle fetches all PortListener services and calls 
sletCreatedInputPort(…) on them



Configuration Admin Service

• Persistently saves configuration for services
– for services (service is managing itself)

– for factories (service factories manage services)

• When a managed service or managed service 
factory is registered, the Configuration Admin service 
passes the persisted configuration to it

• Extensively used in XTream to persist state



Example of Configuration Admin in 
XTream: Channels



Efficient Implementation of Fully 
Dynamic Binding (1/2)

• Use OSGi service tracker
– proactively tracks and caches services

– retrieve up-to-date array of tracked services (Java objects) 
when interacting with other components

– proactive tracking only causes overhead once every time 
bindings actually change

– binding between 2 components recorded in one place
consistency

performance (length of tracker expression is O(1))



Efficient Implementation of Fully 
Dynamic Binding (2/2)

FINE


