Lesson 3 — SOAP message structure

Ernesto Damiani

Universita di Milano

SOAP structure (1)

e SOAP message = SOAP envelope

e Envelope contains two parts:

— Header (optional): independent header blocks with meta
data (security, transactions, session,...)

— Body: several blocks of application data

SOAP structure (2)

« SOAP does not define the semantics of the header
nor the body, but only the structure of the message

Envelope

Header
Header Block
Header Block

Body
Body Element

SOAP message structure

<?xml version="1.0"?>

» <soap:Envelope
xmlins:soap="http://www.w3.0rg/2001/12/s0ap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/s0ap-
encoding"> <soap:Header>

</soap:Header:>
<soap:Body>

<soap:Fault>

</soap:Fault>
</soap:Body>
</soap:Envelope=>

SOAP header (1)

e The header is intended as a generic place holder
for information that is not necessarily application
dependent (the application may not even be aware

that a header was attached to the message)

— Typical uses of the header are: coordination information,
identifiers (e.g., for transactions), security information
(e.g., certificates)

SOAP header (2)

e SOAP provides mechanisms to specify who should
deal with headers and what to do with them. For
this purpose it includes:

— Actor attribute: who should process that particular header
block

— Boolean mustUnderstand attribute: indicates whether it is
mandatory to process the header. If a header is directed
at a node (as indicated by the actor attribute), the
mustUnderstand attribute determines whether it is
mandatory to do so

— SOAP 1.2 added a relay attribute (forward header if not
processed)

SOAP header example

<?xml version="1.0"?>

<soap:Envelope
xmins:soap="http://www.w3.0rg/2001/12/soap-
envelope”
soap:encodingStyle="http://www.w3.0rq/2001/12/s0ap
-encoding”>

<soap:Header>

<m:Trans
xmlns:m="http://www.w3schools.com/transaction/"
soap:mustUnderstand="1">234</m:Trans>

</soap:Header>

</soap:Envelope>

RPC Request

SOAP Envelope

SOAP header

Security context
Meszage
Signature

Example: security headers

RPC Responsze (one of the two)

SOAP Body
Name of Prn:edurel

Input param 1

Input paream 2

SOAP Envelope SOAP Envelope
SOAP header SOAP header
Security context Security context
Meszage Meszage
Signature Signature
SOAP Body SOAP Body
Return parameter Fault entry

SOAP body

e The body is intended for the application specific
data contained Iin the message

— A body element is equivalent to a header block with
attributes actor=ultimateReceiver and mustUnderstand=1

e Unlike for header blocks, SOAP does specify the
contents of some body elements: e.g., It provides a
mapping of RPC to a SOAP body element (RPC

conventions)

— The Fault entry (for reporting errors in processing a SOAP
message)

Sample SOAP body

XML name space identifier for SOAP serialization

XML name space identifier for SOAP envelope

<SOAP-ENV :Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http: //schemas.xmlsoap.org/soap/encoding/" >

<SOAP-ENV : Body>
<m:GetlLastTradePrice xmlns:m="Some-URI|">
<symbol =" S</symbol>
</m:GetlLastTradePrice>
</SOAP-ENV: Body>

</SOAP-ENV: Enve | ope>
—

Putting It together

<SOAP-ENV: Envelope
xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=
"http://schemas. xmlsoap.org/soap/encoding/" />
<SOAP-ENV :Header >
<t:Transaction
xmlns:t="some-URI"
SOAP-ENV :mustUnderstand="1">
5
</t:Transaction>
</SOAP-ENV : Header>
<SOAP-ENV :Body>
<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DEF</symbol >
</m:GetlLastTradePrice>
</SOAP-ENV : Body>

< f SOAP - EN"J : E nyve | (8] pe = From the: Simple Object Access Protocol (SOAP) 11,8 W3C MNote o8 May 2000

Fault management (1)

e When a SOAP message could not be processed, a
SOAP fault is returned

— A fault must carry the following information:

» Fault Code: indicating the class of error and possibly a subcode
(for application specific information)

» Fault String: human readable explanation of the fault (not
intended for automated processing)

= Fault Actor: who caused the fault to happen
» Detail: application specific data related to the fault

Fault management (2)

— The fault codes include:

= Version Mismatch: invalid namespace in SOAP envelope

= Must Understand: a header element with “must understand”
set to “true” was not understood

» Client: message was incorrect (format or content)

» Server: problem with the server, message could not be
processed

— Errors in understanding a mandatory header block are
responded using a fault element, but also include a special
header indicating which one of the original header blocks
was not understood

Message processing (1)

e For each message received, every SOAP node
on the message path must process the
message as follows:

1. Decide in which roles to act (standard roles: next or
ultimateReceiver, or other application-defined roles).
These roles may also depend on the contents of the
message

Message processing (2)

2. ldentify the mandatory header blocks targeted at the
node (matching role, mustUnderstand=true)

= |If a mandatory header block is not understood by the
node, a fault must be generated. The message must not

be processed further

3. Process the mandatory header blocks and, in case of
the ultimate receiver, the body. Other header blocks
targeted at the node maybe processed. The order of
processing is not significant

e SOAP intermediaries will finally forward the
message

Message processing (3)

e Processed header blocks may be removed
depending on the specification for the block

e Header blocks which were targeted at the
Intermediary but not processed are relayed only if
the relay attribute Is set to true

e Active SOAP intermediaries may also change a
message in other ways (e.g., encrypt the message)

SOAP RPC representation

e SOAP specifies a uniform representation for RPC
requests and responses which is platform
Independent. It does not define mappings to
programming languages

e SOAP RPC does not support advanced RPC/RMI
features such as object references or distributed
garbage collection. This can be added by applications
or additional standards (see WSRF)

e Formally, RPC is not part of the core SOAP
specification. Its use is optional

RPC Example

Request:

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI" >
<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

Response:

<SOAP-ENV:Body>

<m:GetlLastTradePriceResponse xmlns:m="Some-URI">
<Price>34.5</Price>

</m:GetLastTradePriceResponse=>

</SOAP-ENV:Body>

SOAP HTTP binding (1)

e SOAP messages can be transferred using any
protocol

e A binding of SOAP to a transport protocol is a
description of how a SOAP message is to be sent
using that transport protocol

e Binding specifies how response and request
messages are correlated

e The SOAP binding framework expresses guidelines
for specifying a binding to a particular protocol

SOAP HTTP binding (2)

SOAP RPC

SOAP

HTTP SMTP

TCP UDP

P

SOAP HTTP binding (3)

e SOAP messages are typically transferred using HTTP

e The binding to HTTP defined in the SOAP
specification

e SOAP can use GET or POST. With GET, the request
IS not a SOAP message but the response is a SOAP
message, with POST both request and response are
SOAP messages (in Version 1.2, Version 1.1 mainly
considers the use of POST)

SOAP HTTP binding (4)

HTTP POST

SOAFP Envelope
SOAP header

Transactional
context

S0OAP Body
Name of Procedure

Input parameter 1

Input parameter 2

POST request example

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "GetlLastTradePrice"

<SOAP-ENV :Envelope

xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">

<m:GetlLastTradePrice xmlns:m="Some-URI">
<symbo|>D1S</symbol>

«</m:GetLastTradePrice>

</SOAP-ENV: Body>

</SOAP-ENV: Envelope>

POST response example

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV: Enve | ope
xmlns: SOAP-ENV=
"http://schemas.xmlsoap.org/soap/enve | ope/"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/" />

Global view

HTTE Iu‘.mp.w.-';f
SOAF Envalape
S0AF haoder

__.-"" Tranzacticnal -"-
e . corfaxt Y

Mame of Precedurs

Inp.rtp-utwhri
Irq:.rl'p-mm-r'turz

| SERVICE PROVIDER

RPZ sall

EDAF
engine

HTTF Response

SOAR Envalape
S0AF heoder

! Transoctional f
cafant |.'.

'L S0AF Bady _."'.
h Eaturn parameter ri

Other bindings

SOAP over Java Message Service 1.0 RC1:

1 <soapenv:Envelope
xmlins:soapenv="http://schemas.xmlsocap.org/socap/envelope/

2 xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
3 xmins:xsd="http://www.w3.0org/2001/XMLSchema”
4 xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >

5 <soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/e
ncoding/" =

b <postMessage><ngName
¥si:type="usd:string"=news.current.events</ngNlame=>

7 <msqg xsi:type="xsd:string"=This is a sample news
item.</msg>

8 </postMessage=
0 </soapenv:Body=>
10 </soapenv:Envelope>

WS Invocation Framework

e \WS Invocation Framework

— Use WSDL to describe a service

— Use WSIF to let the system decide what to do when the
service is invoked:

» If the call is to a local EJB then do nothing

= If the call is to a remote EJB then use RMI

» If the call is to a queue then use JMS

» |f the call is to a remote Web service then use SOAP and XML

e There Is a single interface description, the system
decides on the binding

e This type of functionality Is at the core of the
notion of Service Oriented Architecture

SOAP attachments (1)

e SOAP iIs based on XML and relies on XML for
representing data types

e The original idea in SOAP was to make all data
exchanged explicit in the form of an XML document
much like what happens with IDLs in conventional
middleware platforms

SOAP attachments (2)

<env: Body=>
zp:iCtinerary
xmlns:p="http://. .. /reservation/travel ">
<p:departure:=
<p:departing=New York</p:departing:
<p:arriving=Los Angeles</p:arriving=
<p:depDate>2001-12-14</p:depDate>
<p:depTlime:>late afternunnﬁfg:dEpTina}
zp:seatPreferencezais|e</p:seatPreference=
=/p:departure:
<p:recurn:s
<p:departing=>Los Angeles</p:departing>
<p:arriving=New York</p:arriving=
zp:deplate=2001-12-20</p:depDate>
<p:depTime=mid-morning=sp:depTime:=
zp:seatPreferences»
</p:return=>
</p:itinerary:=
</env: Body=>

SOAP attachment problem (1)

e This approach reflects the implicit assumption that
what is being exchanged is similar to input and
output parameters of program invocations

e It makes it very difficult to use SOAP for
exchanging complex data types that cannot be easily
translated to XML (and there is no reason to do so0):
Images, binary files, documents, proprietary
representation formats, embedded SOAP messages,
etc.

A preliminary solution (1)

e There Is a “SOAP message with attachments note”
proposed Iin 2002 that addressed this problem

e It uses MIME types (like e-mails) and it is based In
Including the SOAP message into a MIME element
that contains both the SOAP message and the
attachment (see next page)

A preliminary solution (2)

e The solution is simple and it follows the same
approach as that taken in e-mail messages: it
Includes a reference and has the actual attachment
at the end of the message

e The MIME document can be embedded into an
HTTP request in the same way as the SOAP message

Other solutions

e Problems with this technique: handling the
message implies dragging the attachment along,
which can have performance implications for large
messages

— scalability can be seriously affected as the attachment is
sent in one go (no streaming)

— not all SOAP implementations support attachments

— SOAP engines must be extended to deal with MIME types
(not too complex but it adds overhead)

e Alternative proposals include DIME of Microsoft
(Direct Internet Message Encapsulation) and WS-
attachments

From SOAP Messages with Attachments. ® W3C Note n December 2000

Example

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary;
Cype=text/xml ;
start="<claim061400a.xmleclaiming-it.com>"

Content-Description: This is the optional message description.

--MIME_boundary

Content-Type: Text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xmleclaiming-it.com>

<?xml version="1.0" 7> SOAP Message

<SOAP-ENV:Enve|lope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV :Body=>

étheSignedFurm hrefeigid:claim0614DUa.tiff@claiming-it.cqm}f}

</SOAP-ENV : Body> / Reference
</SOAP-ENV: Envelope>
--MIME_boundary -
Content-Type: Image/tiffT
Content-Transfer-kncoding: binar¥ _

ai

Content-ID: <claim061400a.tiffeclaiming-it.com> > ATTACHMENT

...binary TIFF image. ..
--MIME_boundary

SOAP attachment problem (2)

e Attachments are relatively easy to include in a
message and all proposals (MIME or DIME based)
are similar in spirit

SOAP attachment problem (3)

e The differences are in the way data is streamed
from the sender to the receiver and how these
differences affect efficiency.

 MIME is optimized for the sender but the receiver
has no idea of how big a message It Is receiving as

MIME does not include message length for the parts
It contains.

— This may create problems with buffers and memory
allocation

— It also forces the receiver to parse the entire message Iin
search for the MIME boundaries between the different parts
(DIME explicitly specifies the length of each part which can
be used to skip what is not relevant)

SOAP attachment problem (4)

e All these problems can be solved with MIME as it
provides mechanisms for adding part lengths and it
could conceivably be extended to support some basic
form of streaming

e Technically, these are not very relevant issues and
have more to do with marketing and control of the

standards

— The real impact of attachments lies on the specification of
the interface of Web services we’ll see later on (how to
model attachments in WSDL?)

SOAP and client-server model

e The close relation among SOAP, RPC and HTTP
has two main reasons:

— SOAP has been initially designed for client server type of
Interaction which is typically implemented as RPC or
variations thereof

— RPC, SOAP and HTTP follow very similar models of
Interaction that can be very easily mapped into each other
(and this is what SOAP has done)

SOAP SWOT analysis (1)

e The advantages of SOAP arise from

— Its ability to provide a universal vehicle for conveying
iInformation across heterogeneous middleware platforms
and applications. In this regard, SOAP will play a crucial
role in enterprise application integration efforts in the
future as it provides the standard that has been missing

all these years

SOAP SWOT analysis (2)

e The limitations of SOAP arise from

— Its adherence to the client server model: data exchanges
as parameters in method invocations

* rigid interaction patterns that are highly synchronous

— Its simplicity: SOAP is not enough in a real application,
many aspects are missing

SOAP and databases (1)

e Some of the first systems to incorporate SOAP as
an access method have been databases. The process
IS extremely simple: a stored procedure is essentially
an RPC interface

— Web service = stored procedure
— IDL for stored procedure = translated into WSDL

— Call to Web service = use SOAP engine to map to call to
stored procedure

e This use demonstrates how well SOAP fits with
conventional middleware architectures and
Interfaces. It is just a natural extension to them

SOAP and databases (2)

Web serviees ,—l—
—imterfares

HTTP |
L ENgine
client o —
/E‘:!?‘ xme | |7 TR
e [mappin wrappin
(= r pping PP 8
EDﬂ.PEngi“e
- E
2
=4 &
HH
Stored procedurne = _:' £
interfaces 8 @
E

database management system

i o
Applicition

rEsource man EEI! f

SOAP summary (1)

e SOAP, In Iits current form, provides a basic
mechanism for encapsulating messages into an XML

document

— mapping the XML document with the SOAP message into
an HTTP request

— transforming RPC calls into SOAP messages

— simple rules on how to process a SOAP message (rules
became more precise and comprehensive in v1.2 of the

specification)

SOAP summary (2)

e SOAP is a very simple protocol intended for
transferring data from one middleware platform to
another. In spite of its claims to be open (which
are true), current specifications and
Implementations are very tied to RPC and HTTP

e SOAP takes advantage of the standardization of
XML to resolve problems of data representation
and serialization (it uses XML Schema to represent
data and data structures, and it also relies on XML
for serializing the data for transmission)

SOAP summary (3)

e As XML becomes more powerful and additional
standards around XML appear, SOAP can take
advantage of them by simply indicating what
schema and encoding is used as part of the SOAP
message

e Current schema and encoding are generic but
soon there will be vertical standards implementing
schemas and encoding tailored to a particular
application area (e.g., the efforts around EDI)

.
pos
o330
P49y,
A
Z
STl
e
so44?
9944
0:9

