
Service Oriented Architectures

Module 1 - Basic technologies

Unit 2 – SOAP

Ernesto Damiani

Università di Milano

Lesson 3 – SOAP message structure



SOAP structure (1)

• SOAP message = SOAP envelope

• Envelope contains two parts:
– Header (optional): independent header blocks with meta 

data (security, transactions, session,…)

– Body: several blocks of application data



SOAP structure (2)

• SOAP does not define the semantics of the header 
nor the body, but only the structure of the message



SOAP message structure



SOAP header (1)

• The header is intended as a generic place holder 
for information that is not necessarily application 
dependent (the application may not even be aware 
that a header was attached to the message)

– Typical uses of the header are: coordination information, 
identifiers (e.g., for transactions), security information 
(e.g., certificates)



SOAP header (2)

• SOAP provides mechanisms to specify who should 
deal with headers and what to do with them. For 
this purpose it includes:

– Actor attribute: who should process that particular header 
block

– Boolean mustUnderstand attribute: indicates whether it is 
mandatory to process the header. If a header is directed 
at a node (as indicated by the actor attribute), the 
mustUnderstand attribute determines whether it is 
mandatory to do so

– SOAP 1.2 added a relay attribute (forward header if not 
processed)



SOAP header example



Example: security headers



SOAP body

• The body is intended for the application specific 
data contained in the message

– A body element is equivalent to a header block with 
attributes actor=ultimateReceiver and mustUnderstand=1

• Unlike for header blocks, SOAP does specify the 
contents of some body elements: e.g., it provides a 
mapping of RPC to a SOAP body element (RPC 
conventions)

– The Fault entry (for reporting errors in processing a SOAP 
message)



Sample SOAP body



Putting it together



Fault management (1)

• When a SOAP message could not be processed, a 
SOAP fault is returned

– A fault must carry the following information:
Fault Code: indicating the class of error and possibly a subcode

(for application specific information)

Fault String: human readable explanation of the fault (not 
intended for automated processing)

Fault Actor: who caused the fault to happen

Detail: application specific data related to the fault



Fault management (2)

– The fault codes include:

Version Mismatch: invalid namespace in SOAP envelope

Must Understand: a header element with “must understand”
set to “true” was not understood

Client: message was incorrect (format or content)

Server: problem with the server, message could not be 
processed

– Errors in understanding a mandatory header block are 
responded using a fault element, but also include a special 
header indicating which one of the original header blocks 
was not understood



Message processing (1)

• For each message received, every SOAP node 
on the message path must process the 
message as follows:

1. Decide in which roles to act (standard roles: next or 
ultimateReceiver, or other application-defined roles). 
These roles may also depend on the contents of the 
message



Message processing (2)

2. Identify the mandatory header blocks targeted at the 
node (matching role, mustUnderstand=true)

If a mandatory header block is not understood by the 
node, a fault must be generated. The message must not 
be processed further

3. Process the mandatory header blocks and, in case of 
the ultimate receiver, the body. Other header blocks 
targeted at the node maybe processed. The order of 
processing is not significant

• SOAP intermediaries will finally forward the 
message



Message processing (3)

• Processed header blocks may be removed 
depending on the specification for the block

• Header blocks which were targeted at the 
intermediary but not processed are relayed only if 
the relay attribute is set to true

• Active SOAP intermediaries may also change a 
message in other ways (e.g., encrypt the message)



SOAP RPC representation

• SOAP specifies a uniform representation for RPC 
requests and responses which is platform 
independent. It does not define mappings to 
programming languages

• SOAP RPC does not support advanced RPC/RMI 
features such as object references or distributed 
garbage collection. This can be added by applications 
or additional standards (see WSRF)

• Formally, RPC is not part of the core SOAP 
specification. Its use is optional



RPC Example



SOAP HTTP binding (1)

• SOAP messages can be transferred using any 
protocol

• A binding of SOAP to a transport protocol is a 
description of how a SOAP message is to be sent 
using that transport protocol

• Binding specifies how response and request 
messages are correlated

• The SOAP binding framework expresses guidelines 
for specifying a binding to a particular protocol



SOAP HTTP binding (2)



SOAP HTTP binding (3)

• SOAP messages are typically transferred using HTTP

• The binding to HTTP defined in the SOAP 
specification

• SOAP can use GET or POST. With GET, the request 
is not a SOAP message but the response is a SOAP 
message, with POST both request and response are 
SOAP messages (in Version 1.2, Version 1.1 mainly 
considers the use of POST) 



SOAP HTTP binding (4)



POST request example



POST response example



Global view



Other bindings



WS Invocation Framework

• WS Invocation Framework
– Use WSDL to describe a service
– Use WSIF to let the system decide what to do when the 

service is invoked:
If the call is to a local EJB then do nothing

If the call is to a remote EJB then use RMI

If the call is to a queue then use JMS

If the call is to a remote Web service then use SOAP and XML

• There is a single interface description, the system 
decides on the binding

• This type of functionality is at the core of the 
notion of Service Oriented Architecture



SOAP attachments (1)

• SOAP is based on XML and relies on XML for 
representing data types

• The original idea in SOAP was to make all data 
exchanged explicit in the form of an XML document 
much like what happens with IDLs in conventional 
middleware platforms



SOAP attachments (2)



SOAP attachment problem (1)

• This approach reflects the implicit assumption that 
what is being exchanged is similar to input and 
output parameters of program invocations

• It makes it very difficult to use SOAP for 
exchanging complex data types that cannot be easily 
translated to XML (and there is no reason to do so): 
images, binary files, documents, proprietary 
representation formats, embedded SOAP messages, 
etc.



A preliminary solution (1)

• There is a “SOAP message with attachments note”
proposed in 2002 that addressed this problem

• It uses MIME types (like e-mails) and it is based in 
including the SOAP message into a MIME element 
that contains both the SOAP message and the 
attachment (see next page)



A preliminary solution (2)

• The solution is simple and it follows the same 
approach as that taken in e-mail messages: it 
includes a reference and has the actual attachment 
at the end of the message

• The MIME document can be embedded into an 
HTTP request in the same way as the SOAP message



Other solutions

• Problems with this technique: handling the 
message implies dragging the attachment along, 
which can have performance implications for large 
messages

– scalability can be seriously affected as the attachment is 
sent in one go (no streaming)

– not all SOAP implementations support attachments

– SOAP engines must be extended to deal with MIME types 
(not too complex but it adds overhead)

• Alternative proposals include DIME of Microsoft 
(Direct Internet Message Encapsulation) and WS-
attachments



Example



SOAP attachment problem (2)

• Attachments are relatively easy to include in a 
message and all proposals (MIME or DIME based) 
are similar in spirit



SOAP attachment problem (3)

• The differences are in the way data is streamed 
from the sender to the receiver and how these 
differences affect efficiency. 

• MIME is optimized for the sender but the receiver 
has no idea of how big a message it is receiving as 
MIME does not include message length for the parts 
it contains.

– This may create problems with buffers and memory 
allocation

– It also forces the receiver to parse the entire message in 
search for the MIME boundaries between the different parts 
(DIME explicitly specifies the length of each part which can 
be used to skip what is not relevant)



SOAP attachment problem (4)

• All these problems can be solved with MIME as it 
provides mechanisms for adding part lengths and it 
could conceivably be extended to support some basic 
form of streaming

• Technically, these are not very relevant issues and 
have more to do with marketing and control of the 
standards

– The real impact of attachments lies on the specification of 
the interface of Web services we’ll see later on (how to 
model attachments in WSDL?)



SOAP and client-server model

• The close relation among SOAP, RPC and HTTP 
has two main reasons: 

– SOAP has been initially designed for client server type of 
interaction which is typically implemented as RPC or 
variations thereof

– RPC, SOAP and HTTP follow very similar models of 
interaction that can be very easily mapped into each other 
(and this is what SOAP has done)



SOAP SWOT analysis (1)

• The advantages of SOAP arise from
– its ability to provide a universal vehicle for conveying 

information across heterogeneous middleware platforms 
and applications. In this regard, SOAP will play a crucial 
role in enterprise application integration efforts in the 
future as it provides the standard that has been missing 
all these years



SOAP SWOT analysis (2)

• The limitations of SOAP arise from
– its adherence to the client server model: data exchanges 

as parameters in method invocations 
rigid interaction patterns that are highly synchronous

– its simplicity: SOAP is not enough in a real application, 
many aspects are missing



SOAP and databases (1)

• Some of the first systems to incorporate SOAP as 
an access method have been databases. The process 
is extremely simple: a stored procedure is essentially 
an RPC interface

– Web service = stored procedure

– IDL for stored procedure = translated into WSDL

– Call to Web service = use SOAP engine to map to call to 
stored procedure

• This use demonstrates how well SOAP fits with 
conventional middleware architectures and 
interfaces. It is just a natural extension to them



SOAP and databases (2)



SOAP summary (1)

• SOAP, in its current form, provides a basic 
mechanism for encapsulating messages into an XML 
document

– mapping the XML document with the SOAP message into 
an HTTP request

– transforming RPC calls into SOAP messages

– simple rules on how to process a SOAP message (rules 
became more precise and comprehensive in v1.2 of the 
specification)



SOAP summary (2)

• SOAP is a very simple protocol intended for 
transferring data from one middleware platform to 
another. In spite of its claims to be open (which 
are true), current specifications and 
implementations are very tied to RPC and HTTP

• SOAP takes advantage of the standardization of 
XML to resolve problems of data representation 
and serialization (it uses XML Schema to represent 
data and data structures, and it also relies on XML 
for serializing the data for transmission)



SOAP summary (3)

• As XML becomes more powerful and additional 
standards around XML appear, SOAP can take 
advantage of them by simply indicating what 
schema and encoding is used as part of the SOAP 
message

• Current schema and encoding are generic but 
soon there will be vertical standards implementing 
schemas and encoding tailored to a particular 
application area (e.g., the efforts around EDI)

FINE


