
Service Oriented Architectures

Module 1 - Basic technologies

Unit 3 – WSDL

Ernesto Damiani

Università di Milano

Lesson 4 – Web Service
Interface Definition (Part I)



Interface Definition Languages (1)

• IDLs (Interface Definition Languages) are typically 
used in implicit communication approaches, where 
communication primitives are hidden behind 
procedure or method calls and, thus, 
communicating implies knowing the interface of the 
procedure/method at the other side

– a language for declaring interfaces (used to publish interfaces 
and by the compiler and linker to decide what to do when a call 
to a remote procedure/method takes place)

– a mapping between data representations in the language to an 
intermediate representation (for marshalling)

– a way of serializing the data for transmission
– compilers to turn the interface definitions into modules that can 

be linked and compiled into other software modules
most IDLs are character based (data is represented in ASCII)



Interface Definition Languages (2)

• For implicit communication, the intermediate 
representation is strongly tied to how interfaces are 
defined for software modules at the programming 
language level

• The IDL allows to define each service in terms of 
their names, and input and output parameters (plus 
maybe other relevant aspects)



Interface Definition Languages (3)

• All RPC systems have a language that allows to 
describe services in an abstract manner 
(independent of the programming language used)

– This language has the generic name of IDL (e.g., the IDL 
of SUN RPC is called XDR)

• An interface compiler is then used to generate the 
stubs for clients and servers (rpcgen in SUN RPC)

– Rpcgen generates procedure headings that the 
programmer can then use to fill out the details of the 
implementation



Interface Definition Languages (4)

• Given an IDL specification, the interface compiler 
performs a variety of tasks

– It generates the client stub procedure for each procedure 
signature in the interface. The stub will be then compiled 
and linked with the client code

– It generates a server stub. It can also create a server 
main, with the stub and the dispatcher compiled and 
linked into it. This code can then be extended by the 
designer by writing the implementation of the procedures

– It might generate a *.h file for importing the interface and 
all the necessary constants and types



XML reminder (1)

• The goal of XML is to provide a standardized way 
to specify data structures so that when data is 
exchanged, it is possible to understand what has 
been sent

– The DTD (Document Type Definition) specifies how the 
data structure is described: processing instructions, 
declarations, comments, and elements

– Using the DTD, the XML document can be correctly 
interpreted by a program by simply parsing the document 
using the grammar provided by the DTD

– The idea is similar to IDL except that instead of defining 
parameters as combinations of standard types, a DTD 
describes arbitrary documents as semi-structured data



XML reminder (2)

• Using XML is possible to exchange data through 
HTTP and Web servers and process the data 
automatically

– The use of XML reduces the universality of the browser 
since now a browser needs additional programs to deal 
with specific markup languages developed using XML 
(somewhat similar to plug-ins but more encompassing in 
terms of functionality)

– However, this is not much of a problem since the browser 
is for humans while XML is for automated processing

• XML can be used as the intermediate language for 
marshalling/serializing arguments when invoking 
services across the Internet



XML reminder (3)



XML Schema (1)

• A different problem related to accessing EAI 
systems through a web interface is the 
representation of relational data

– If HTML is used, the data is formatted for presentation, 
not for processing

– If XML and DTDs are used, then the structured is better 
suited for processing but the processing is ad-hoc (one 
can define any DTD one wants)

• XML Schema has been proposed to allow 
database like query processing over XML 
documents.

– XML Schema is a data definition language for XML 
documents that allows to treat them as relational data in 
a standardized manner



XML Schema (2)

• What is different between XML Schema and DTDs?

• XML Schema
– uses the same syntax as XML (DTDs have a different 

syntax)

– provides a wider set of types (similar to those in SQL)

– allows to define complex types from the basic types

– supports key and referential integrity constraints

– can be used by query languages (XQuery, for instance) to 
parse XML documents and treat them as relational data

– can be used to specify the data model used by a Web 
service interface 



WSDL: the notion (1)

• WSDL (Web Services Description Language) can be 
best understood when we approach it as an XML 
version of an IDL that also covers the aspects related 
to integration through the Internet and the added 
complexity of Web services

• A conventional IDL does not include information 
such as:

– location of the service (implicit in the platform and found 
through static or dynamic binding)

– different bindings (typically an IDL is bound to a transport 
protocol)

– sets of operations (since an interface defines a single access 
point and there is no such a thing as a sequence of 
operations involved in the same service)



WSDL: the notion (2)

• An IDL in conventional middleware and enterprise 
application integration platforms has several 
purposes:

– description of the interfaces of the services provided (e.g., 
RPC)

– serve as an intermediate representation for bridging 
heterogeneity by providing a mapping of the native data 
types to the intermediate representation associated to the 
IDL in question

– serve as the basis for development through an IDL compiler 
that produces stubs and libraries that can be used to 
develop the application



Introduction to WSDL

• The WSDL specification is in Version v2.0 (June 
2007)

– it discusses how to describe the different parts that comprise 
a Web service interface the type system used to describe the 
service data model (XML Schema)

– the messages involved in the interaction with the service
– the individual operations composed of 4 possible message 

exchange patterns
– the sets of operations that constitute a service
– the mapping to a transport protocol for the messages
– the location where the service provider resides
– groups of locations that can be used to access the same 

service

• It also includes a specification indicating how to bind 
WSDL to the SOAP, HTTP (POST/GET) and MIME 
protocols



Elements of WSDL 2.0



Layering



The role of WDSL/UDDI (1)

• Once it is possible to interact with any service 
provider using the standard SOAP protocol, it is 
still necessary to:

– describe the services (WSDL)

– discover the services (UDDI, Universal Description, 
Discovery and Integration)



The role of WDSL/UDDI (2)



WSDL data types

• The types in WSDL are used to specify the contents 
of the messages (normal messages and fault 
messages) that will be exchanged as part of the 
interactions with Web services

– the type system is typically based on XML Schema 
(structures and data types)

– support is mandatory for all WSDL processors

– an extensibility element can be used to define a schema 
other than XML Schema



WSDL data types: example



Messages and faults (1)

• Messages have a name that identifies them 
throughout the XML document. They are divided into 
parts, each of them being a data structure 
represented in XML. Each part must have a type 
(basic or complex types, previously declared in the 
WSDL document)

– A WSDL message element matches the contents of the body 
of a SOAP message. By looking at the types and looking at 
the message, it is possible to build a SOAP message that 
matches the WSDL description (and this can be done 
automatically since the description is XML based and the 
types also supported by SOAP)

– A message does not define any form of interaction, it is just 
a message 



Messages and faults (2)

• In WSDL 1.0, the structure of a “message” was 
explicitly defined, listing all of its parts

• In WSDL 2.0, a “message reference component” is 
defined as part of an operation and contains three 
elements

– message label (indicating the message pattern used for 
the message)

– direction (whether it is an inbound or outbound message)

– message element (the actual contents of the message 
expressed in terms of the types previously defined)



Messages and faults (3)

• Faults are a special kind of message used to 
report errors



Operations

• In WSDL 2.0, an operation is a set of messages 
and faults. The sequencing and number of 
messages in the operation is determined by the 
message exchange pattern

– The style of an operation distinguishes between RPC-like 
behavior, document oriented message exchange or (in 
2.0) set-and get-of attributes

– Operations can be annotated with features and properties 
(e.g., reliability, security, routing)



Interfaces (1)

• An interface corresponds to the abstract definition 
of a Web service (abstract because it does not 
specify any information about where the service 
resides or what protocols are used to invoke the 
Web service)

• The interface is simply a list of operations that 
can be used in that Web service

– Operations are not defined by themselves but only as part 
of an interface



Interfaces (2)



Bindings (1)

• A binding defines message formats and protocol 
details for the operations and messages of a given 
Port Type (end point in the new spec)

• A binding corresponds to a single end point 
(obvious since it needs to refer to the operations 
and messages of the end point)



Bindings (2)

• An end point can have several bindings (thereby 
providing several access channels to the same 
abstract service)

– The binding is extensible with elements that allow to 
specify mappings of the messages and operations to any 
format or transport protocol. In this way, WSDL is not 
protocol specific



End points

• An end point specifies the address of a binding, 
i.e., how to access the service using a particular 
protocol and format

• End points can only specify one address and they 
should not contain any binding information

• The end point is often specified as part of a 
service rather than on its own



Services

• Services group a collections of ports together and 
therefore become the complete definition of the 
service as seen by the outside: a service supports 
several protocols (it has several bindings)

– access to the service under a given protocol is through a 
particular address (specified in the ports of each binding)

– operations and messages to exchange are defined in the 
End Point

– ports that are part of the same service may not 
communicate with each other

– ports that are part of the same service are considered as 
alternatives all of them with the same behavior 
(determined by the End Point) but reachable through 
different protocols



Bindings and ports: example



RPC vs. REST style

• The style of a SOAP message controls the format 
of the <soap:Body> element:

FINE


