Lesson 4 — Web Service
Interface Definition (Part I)

Ernesto Damiani

Universita di Milano



Interface Definition Languages (1)

e IDLs (Interface Definition Languages) are typically
used in implicit communication approaches, where
communication primitives are hidden behind
procedure or method calls and, thus,
communicating implies knowing the interface of the

procedure/method at the other side

— a language for declaring interfaces (used to publish interfaces
and by the compiler and linker to decide what to do when a call
to a remote procedure/method takes place)

— a mapping between data representations in the language to an
iIntermediate representation (for marshalling)

— a way of serializing the data for transmission

— compilers to turn the interface definitions into modules that can
be linked and compiled into other software modules

» most IDLs are character based (data is represented in ASCII)



Interface Definition Languages (2)

e For implicit communication, the intermediate
representation is strongly tied to how interfaces are
defined for software modules at the programming
language level

e The IDL allows to define each service Iin terms of
their names, and input and output parameters (plus
maybe other relevant aspects)



Interface Definition Languages (3)

e All RPC systems have a language that allows to
describe services in an abstract manner
(independent of the programming language used)

— This language has the generic name of IDL (e.g., the IDL
of SUN RPC is called XDR)

e An interface compiler is then used to generate the
stubs for clients and servers (rpcgen in SUN RPC)

— Rpcgen generates procedure headings that the
programmer can then use to fill out the details of the
Implementation



Interface Definition Languages (4)

e Given an IDL specification, the interface compiler

performs a variety of tasks

— It generates the client stub procedure for each procedure
signature in the interface. The stub will be then compiled
and linked with the client code

— It generates a server stub. It can also create a server
main, with the stub and the dispatcher compiled and
linked into it. This code can then be extended by the
designer by writing the implementation of the procedures

— It might generate a *.h file for importing the interface and
all the necessary constants and types



XML reminder (1)

e The goal of XML is to provide a standardized way
to specify data structures so that when data is
exchanged, it is possible to understand what has
been sent

— The DTD (Document Type Definition) specifies how the
data structure is described: processing instructions,
declarations, comments, and elements

— Using the DTD, the XML document can be correctly
Interpreted by a program by simply parsing the document
using the grammar provided by the DTD

— The idea is similar to IDL except that instead of defining
parameters as combinations of standard types, a DTD
describes arbitrary documents as semi-structured data



XML reminder (2)

e Using XML is possible to exchange data through
HTTP and Web servers and process the data
automatically

— The use of XML reduces the universality of the browser
since now a browser needs additional programs to deal
with specific markup languages developed using XML
(somewhat similar to plug-ins but more encompassing in
terms of functionality)

— However, this is not much of a problem since the browser
Is for humans while XML is for automated processing

e XML can be used as the intermediate language for
marshalling/serializing arguments when invoking
services across the Internet



XML reminder (3)

<l version= 10 =
"DMouse’:0.792449, :Efﬁ?itm SYSTEM "treefile did"
(((("Human':0.105614, -
'Chimp':0.171507 “branch-
10074538, e
"Gorilla':0.152701 Vs
):0. 045950, —
'Orang':0.303652 e
1:0.121194, 0797449
'Gibbon':0.336106 lengt-
}:0.485445, el
'Bovipe':[. 002153 node
Human Chimp )-0.0; .,bmd:.
\‘ ) r Data to send H i
I
<tranch-
/<IELEMENT trees (free+)> ™ e
<IELEMENT tree (branch branch braneh? Jength”)> Py
<IEL EMENT branch (node, length?) opeie
<IELEMENT node (branchbranch)specie)> NS Homs.
<IELEMENT length (#PCDATA)> < noda
<IELEMENT specie (FPCDATA)- - —
~ L ] _DToFile |/ s [ AL File




XML Schema (1)

e A different problem related to accessing EAI
systems through a web interface is the
representation of relational data

— If HTML is used, the data is formatted for presentation,
not for processing

— If XML and DTDs are used, then the structured is better
suited for processing but the processing is ad-hoc (one
can define any DTD one wants)

e XML Schema has been proposed to allow
database like query processing over XML

documents.

— XML Schema is a data definition language for XML
documents that allows to treat them as relational data in

a standardized manner



XML Schema (2)

e \What is different between XML Schema and DTDs?
e XML Schema

— uses the same syntax as XML (DTDs have a different
syntax)

— provides a wider set of types (similar to those in SQL)
— allows to define complex types from the basic types
— supports key and referential integrity constraints

— can be used by gquery languages (XQuery, for instance) to
parse XML documents and treat them as relational data

— can be used to specify the data model used by a Web
service interface



WSDL: the notion (1)

 WSDL (Web Services Description Language) can be
best understood when we approach it as an XML
version of an IDL that also covers the aspects related
to integration through the Internet and the added
complexity of Web services

e A conventional IDL does not include information

such as:

— location of the service (implicit in the platform and found
through static or dynamic binding)

— different bindings (typically an IDL is bound to a transport
protocol)

— sets of operations (since an interface defines a single access
point and there is no such a thing as a sequence of
operations involved in the same service)



WSDL: the notion (2)

e An IDL in conventional middleware and enterprise
application integration platforms has several
purposes:

— description of the interfaces of the services provided (e.g.,
RPC)

— serve as an intermediate representation for bridging
heterogeneity by providing a mapping of the native data
types to the intermediate representation associated to the
IDL in question

— serve as the basis for development through an IDL compiler
that produces stubs and libraries that can be used to
develop the application



Introduction to WSDL

e The WSDL specification is in Version v2.0 (June
2007)

— It discusses how to describe the different parts that comprise
a Web service interface the type system used to describe the
service data model (XML Schema)

— the messages involved in the interaction with the service

— the individual operations composed of 4 possible message
exchange patterns

— the sets of operations that constitute a service

— the mapping to a transport protocol for the messages

— the location where the service provider resides

— groups of locations that can be used to access the same

service

e It also includes a specification indicating how to bind
WSDL to the SOAP, HTTP (POST/GET) and MIME
protocols



Elements of WSDL 2.0

WSDL document

Types (type information for the document, e.g., XML Schemal)

e

1

|

1

1

~

a

..

-

i

)

—

-+

Message1 || Message 2 || Message 3 || Message 4 || Message § || Message 6 G

S

2

Operation 1 Operation 2 Operation 3 =

-+

i

]

_ o

Interface (abstract service) <

binding 1 binding 2 binding 3 binding 4 S
. | | | E‘.E
] | l | 5z
endpoint 1 endpoint2  endpoint 3 endpoint 4 L ﬁ

a
~— | ! — B F
Service (the interface in all 2 O

its available implementations) -




Layering

Qiﬁfqvery
Messaging l Description
. | upDI | |
User
Interface™ SOAP | WSDL
HTML XML
HTTP

TCP/IP




The role of WDSL/ZUDDI (1)

- Once it is possible to interact with any service
provider using the standard SOAP protocol, it is
still necessary to:

— describe the services (WSDL)

— discover the services (UDDI, Universal Description,
Discovery and Integration)



The role of WDSL/ZUDDI (2)

LIDDI

—,
HIEEEWEE
/ REGISTRY

o —I- "'.'.l
' Serviee lf:}
descri
escription J.S

.‘l

.H ; .

+ PUBLISH
.\\-
,
.

SOAF f "

SERVICE

l,.-‘ PROVIDER A

! N,
", \ s Service n,
h - descripton

SERVICE
",  RECQUESTER

-\.
!

l_."
Service Interfacs

I,
Y

N Service ’
i) s

WSsDL



WSDL data types

e The types in WSDL are used to specify the contents
of the messages (hormal messages and fault
messages) that will be exchanged as part of the
Interactions with Web services

— the type system is typically based on XML Schema
(structures and data types)

— support is mandatory for all WSDL processors

— an extensibility element can be used to define a schema
other than XML Schema



WSDL data types: example

<glement name="P0" [Hlefms:PDType'& PURCHASE ORDER TYPE
ﬂcgn} }IexType name="POType">
a

<element name="id" type="sfring"/>
<element name="name" fype="string"/>
<glement name="items">
ﬁ::gml :!exType}
a
. a?ﬁ!emmt name="item" type="tns:ltem" minOccurs="0" maxOccurs="unbounded"/>
</complexT
ﬂelemer?t} ype>
<fall>
</complexType>

<complexType name="ltem">
<all> _ _ ITEM TYPE
<element name="quantity" type="int"/>
» Tﬁ!ement name="product’ type="string"/>
a
</complexType>

<element name="Invoice" type="tns:Invoice Type"/> INVOICE TYPE
*:cgn} :lexType name="InvoiceType">
a
<element name="id" type="string"/>
</all>
</complexType>

From Web Services Description Language [YWSDL) 1.1 W3C Note 15 March 200



Messages and faults (1)

e Messages have a name that identifies them
throughout the XML document. They are divided into
parts, each of them being a data structure
represented in XML. Each part must have a type
(basic or complex types, previously declared in the
WSDL document)

— A WSDL message element matches the contents of the body
of a SOAP message. By looking at the types and looking at
the message, It is possible to build a SOAP message that
matches the WSDL description (and this can be done
automatically since the description is XML based and the
types also supported by SOAP)

— A message does not define any form of interaction, it is just
a message



Messages and faults (2)

e In WSDL 1.0, the structure of a “message” was
explicitly defined, listing all of its parts

e In WSDL 2.0, a “message reference component” is
defined as part of an operation and contains three

elements

— message label (indicating the message pattern used for
the message)

— direction (whether it is an inbound or outbound message)

— message element (the actual contents of the message
expressed in terms of the types previously defined)



Messages and faults (3)

e Faults are a special kind of message used to
report errors

<message name="P0O"> 1.0
<part name="po" element="tns:PO"/>
<part name="invoice" element="tns:Invoice"/>
</message>




Operations

e In WSDL 2.0, an operation is a set of messages
and faults. The sequencing and number of
messages Iin the operation is determined by the
message exchange pattern

— The style of an operation distinguishes between RPC-like
behavior, document oriented message exchange or (in
2.0) set-and get-of attributes

— Operations can be annotated with features and properties
(e.q., reliability, security, routing)

ONE-WAY: REQUEST-RESPONSE:
<wsdl.operation name="Purchase™> <wsdl.operation name="Purchase">

<wsdlinput name="Order" message="P0O"> <wsdlinput name="0Order" message="P0"/>
</wsdl:operation> <wsdl:output name="Confirm" message="Conf"/>

<wsdl-fault name="Error" message="POEmor"/>
<fwsdl:operation>




Interfaces (1)

e An interface corresponds to the abstract definition
of a Web service (abstract because it does not
specify any information about where the service
resides or what protocols are used to invoke the
Web service)

e The interface is simply a list of operations that
can be used in that Web service

— Operations are not defined by themselves but only as part
of an interface



Interfaces (2)

MNote 15 March 2001

-
e

guage (WsDL 12 W3

I

<message name="m1">
<part name="body" element="tns:GetCompanylnfo"/>
</message>

<message name="mz2">

<part name="body" element="tns:GetCompanylnfoResult"/>
<part name="docs" type="xsd:string"/>

<part name="logo" type="tns:ArrayOfBinary"/>

</message>

<portType name="pt1">
<operation name="GetCompanyinfo">
<input message="m1"/>
<putput message="mz2"/>
</cperation>
</portType>

From Web Services Description Lan



Bindings (1)

e A binding defines message formats and protocol
details for the operations and messages of a given
Port Type (end point in the new spec)

e A binding corresponds to a single end point
(obvious since it needs to refer to the operations
and messages of the end point)



Bindings (2)

e An end point can have several bindings (thereby
providing several access channels to the same
abstract service)

— The binding is extensible with elements that allow to
specify mappings of the messages and operations to any
format or transport protocol. In this way, WSDL is not
protocol specific



End points

e An end point specifies the address of a binding,
I.e., how to access the service using a particular
protocol and format

e End points can only specify one address and they
should not contain any binding information

e The end point is often specified as part of a
service rather than on its own



Services

e Services group a collections of ports together and
therefore become the complete definition of the
service as seen by the outside: a service supports
several protocols (it has several bindings)

— access to the service under a given protocol is through a
particular address (specified in the ports of each binding)

— operations and messages to exchange are defined in the
End Point

— ports that are part of the same service may not
communicate with each other

— ports that are part of the same service are considered as
alternatives all of them with the same behavior
(determined by the End Point) but reachable through
different protocols



Frorm We b Sereice UEICrlF'tln‘.'l"' L:r"_E..:EE [WEDL) A l."l.'il: Mabe 15 March zom

Bindings and ports:

<binding name="b1" type="tnapt1">
<pperation name="GetCompanylnfo™
{anm:upet;aﬁﬂn soapAction="htip-/example com/GetCompanyinfo™/=
<Inpu
<goapbody use="literal"/>
<finput=>
<oulput>
<mime.multipariRelated>
<mime:part=>
<soap.body paris="body" use="lileral"/>
</mime part>
<mime:part>
<mime content part="docs" type="text/html"/>»
</mime part=
<mime:part> ot pertc s
<mime:conte ="logo" type="Image/qi
<mime:content part="logo” type="1 magefi'?:ueg".fb
</mime part>
<'mime: mutipartRelated=
<foutput>
</operation>
</binding=>

<service name="Com Euan.ru:e >
<port name=" InfoPort"binding="tnab1">

example

ﬂsc:ap a ress locabon="http fexample.com/companyinfo"’=

</port>
<fsanvice>



RPC vs. REST style

e The style of a SOAP message controls the format
of the <soap:Body> element:

= RPC style, an extra child element of = Document style, the Body
the Body is added to identify the contains an arbitrary XML
method to be called. Farameters are document

listed inside this one.

=50ap: Body= =50ap: Body=

<tns: Confirmlrder <tns;order number="00007234" >
rmlns:tns="http://my.packagss" > Purchase Order Confirmation
cnusber cIns: statussCont i rmedetns: statuss
K5 "I::,'|_‘:-r:-' Kol ;| |'|I-e-:g:_||:|"";1 E 34 number

=COnTirm , ) </tns:ordar
’si ctype="xsd  boolean” »true</conf i rme : y

i . Bty
< /tns - Methods =R By
«/soap: Body
ConfirmOrder(number,confirm); SendOrderDocument),;

FINE
3335 4333
. .zir 0:: *



