
Service Oriented Architectures

Module 1 - Basic technologies

Unit 3 – WSDL

Ernesto Damiani

Università di Milano

Lesson 5 – Web Service
Interface Definition (Part II)



Controlling the style (1)

• The style of the SOAP message is specified in a 
WSDL document in the binding section



Controlling the style (2)

• The style is also reflected in the 
<wsdl:message> element, which can have:

– For REST style, at most 1 <wsdl:partelement=“…”>

– For RPC style, any number of <wsdl:parttype=“…”> 
elements

– With RPC style you only need an <wsdl:types> element 
to define the complex types used by the parameters

Note: REST style is more general as it can implement the 
RPC style by using an appropriate XML Schema



Controlling encoding (1)

• The serialized data content of a SOAP message 
can also be encoded in different ways:

– Literal (follow the XML schema definition of the WSDL)

– SOAP encoded (follow Section 5 of the SOAP 1.1 spec)

• The encoding is specified in the WSDL binding 
section, for each message exchanged as part of 
each operation, as follows



Controlling encoding (2)

• Style and encoding are usually paired 
(REST/Literal and RPC/Encoded). However, they are 
orthogonal and can be selected independently when 
the service is deployed

– These are also orthogonal with respect to the MEP 
(Message Exchange Pattern) used by the operation



WSDL example (1)



WSDL example (2)



Conversations (1)

• As a first approximation, a conversation models 
the sequences of operations that a client may 
invoke as part of the interaction with a Web service

• In general, a conversation defines a complex 
interaction between multiple Web services involving 
the exchange of several messages and the 
invocation of different operations in a well defined 
order



Conversations (2)

• In this context, a coordination protocol specifies 
the set of correct conversations between the 
various services

– the service interface description (WSDL) only lists the 
available operations but does not specify what is the 
correct order of invoking them



Conversations (3)



Conversations (4)

• WSDL defines the interface of a Web service in 
terms of what are the messages that are exchanged 
(received and produced by the service)

– A WSDL document also structures the messages into pairs 
(that correspond to the operations provided by a service)

– However, WSDL does not contain any further information 
specifying what is the correct order of invocation of the 
various operations. If an operation should not (yet) be 
invoked, a fault message is returned



Conversations (5)

• From the client’s point of view, this makes it 
difficult to automatically ensure the correctness of 
the interaction

– On the service side, an interaction across multiple 
operations may require to maintain session information. 
(statefulinteraction). This information is also used to 
enforce the correctness of the interaction. Whatever 
mechanism is employed, these constraints do not surface 
in the WSDL interface description 

• The goal is to make the development as 
automatic as possible!



Modeling conversations (1)

• There are many different ways of modeling 
conversations. Extending the basic interface 
description of a service, the most important 
requirement is to describe what are all possible valid 
conversations with it. Thus, our description must 
define all acceptable sequences of operation 
invocations

– On the interface level, the goal is to make clients aware of 
what is the coordination protocol supported by the service so 
that they interact correctly with it

– Internally, the purpose of the conversation model is to 
support and facilitate the development of the implementation 
of the service relying on the coordination infrastructure to 
conduct the conversation



Modeling conversations (2)

• The peers to be coordinated are usually labeled 
with their role in the conversation

– The coordination protocol specifies:
what are the possible messages (or operations) that make up 

the conversation

for each message, which role is the originator and who is the 
intended recipient

what are the ordering constraints in the sequence of message 
exchanges

under which conditions the conversation is considered to be 
completed

– This information complements the WSDL port type (or 
interface) to be provided by each role, which only lists the 
accepted messages



Finite state machines (1)

• A simple way of describing a coordination protocol 
is to use a finite state machine

– states model the stages followed by the conversation

– transitions correspond to operations invoked by the client 
on the service (or in general, to messages which are 
received or sent by the service)

– the set of valid operations (which can legally be invoked by 
the client) changes with the state of the conversation. Each 
time a message is exchanged, the state of the conversation 
must be updated

– the valid operations are the ones associated with the 
transitions outgoing from the current state



Finite state machines (2)



UML Sequence Diagrams (1)

• When multiple peers are involved, state machines 
can still be used with the addition of roles, 
identifying the sender and receiver of each message

• Alternative representations (with the same 
semantics) are also possible

– UML Sequence Diagrams allow to visualize the evolution of 
the conversation over time, by showing each message as it 
is exchanged between two roles

– Sequence diagrams lack branching support, where 
alternative diagrams must be used to show alternative 
paths in the conversation. Also, when many roles are 
involved, the readability of the diagram may suffer



UML Sequence Diagrams (2)



UML activity diagrams (1)

• Activity Diagrams also support multiple roles 
through swimlanes. Unlike sequence diagrams, 
they also support branches (and parallelism) in the 
flow of the conversation

– Activities model the synchronous or asynchronous 
invocation of an operation. The activity is positioned in 
the swimlane of the client role and is labeled with the 
target role

– Final states are used to identify completed conversations



UML activity diagrams (2)



Syntax and semantics (1)

• One of the advantages of using self-describing 
XML for encoding SOAP messages is that it becomes 
really easy to develop the corresponding parsers 
(for reading messages) and emitters (for writing 
messages)

• There are however some disadvantages, not only 
related to the performance overhead (XML parsing 
and validation is expensive) but also to the 
limitations of XML as a data exchange format (SOAP 
Attachments for exchanging binary data)

• Another problem is that parseability does not 
guarantee interoperability



Syntax and semantics (2)

•The fact that all parties involved can parse SOAP 
messages, only solves the interoperability problem 
at the syntax level. Although progress has already 
been made by standardizing the syntax, there is still 
a lot to be done to agree on the semantics of the 
messages

– At the SOAP-level, it may be necessary to apply 
transformations to the messages that are exchanged (Data 
mapping tools for EAI have not disappeared, they have just 
become XML/XSLT based)

– At the WSDL-level, it should be possible to describe the 
semantics in addition to the syntax of the service interfaces



Interface syntax

• WSDL defines a service interface (or port type) as 
a set of operations, grouping together pairs of 
messages, which are defined in terms of parts (with 
name and data type, defined in an XML schema)

• From a WSDL description it is possible to 
automatically infer (and validate) the structure of the 
corresponding SOAP messages



Interface syntax: example



Data transformation (1)



Data transformations (2)

• In this example, both client and server use WSDL 
to describe their interface and SOAP to exchange a 
message. Even if we assume that the two parties are 
somehow compatible, this standardization does not 
guarantee interoperability, unless both services use 
the same XML Schema and (abstracted from the 
interface description), they agree on the semantics 
of the message



Data transformation (3)

• If it is possible to address this mismatch, the 
message cannot be sent directly, but should be 
transformed between the two schemas while 
preserving its semantics

– This transformation can occur at the client-side (the client 
knows how to adapt to a given server), at the server-side 
(the server supports different data models) or –in a true 
integration scenario –in the middle (using a mediator 
service, or an ESB)



Scaling transformations (1)

• In general, given N parties to be integrated, up to 
= N (N-1) transformations have to be defined (and 
maintained)

– This assumes that it should be possible to directly 
transform between the schemas used by each of the 
parties

– If we allow to compose multiple transformations and 
introduce an intermediate representation, the number of 
transformations is reduced to 2N



Scaling transformations (2)

• If the various schemas are fully overlapping (i.e., 
the transformations do not loose information when 
they are applied to the messages), then it is also 
possible to avoid a single intermediate 
representation and apply a sequence of 
transformations in order to get the desired format. 
In this case, we only need N transformations



Scaling transformations (3)



Interface semantics (1)

• Each syntactical element of a service interface 
(message, data structure or operation) has a precise 
semantic meaning associated with it

• This meaning should be taken into account by 
clients invoking the service, so that they can 
understand what functionality is offered by the 
service



Interface semantics (2)

– Semantics can be modeled: 

using standard documents

using constraints (e.g., in case of domains having enumerable 
elements)

using ontologies (which formally define a vocabulary of terms 
and relationships)

using contracts (pre-conditions and post-conditions)



Interface semantics (3)

• In an integration scenario, the middleware 
infrastructure should preserve the semantics of the 
applications to be integrated as well as provide 
support for mediation (the transformation of 
messages between different representation by 
mapping concepts that are shared between all 
applications)

– If services are described with WSDL, there is very little 
semantics associated with them.

• Thus, there are many extensions to WSDL that can 
be used to model semantics, e.g., using the RDF 
(Resource Description Framework) and OWL (Web 
Ontology Language) FINE


