
Service Oriented Architectures

Module 1 - Basic technologies

Unit 4 – UDDI

Ernesto Damiani

Università di Milano

Lesson 7 – Directory services 
(Part II)



Binding template (1)

• A binding template contains the technical information 
associated to a particular service. It contains the following 
information:

– bindingKey

– serviceKey

– description

– accessPoint: the network address of the service being provided

– typically a URL but it can be anything as this field is a string: e.g., 
an email address or even a phone

– tModels: a list of entries corresponding to tModels associated with 
this particular binding. The list includes references to the tModels,

– documents describing these tModels, short descriptions, etc.

– categoryBag: additional information about the service and its 
binding (e.g., whether it is a test binding, it is on production, etc.) 



Binding template (2)

• A businessService can have several binding 
templates, but a bindingTemplate has only one 
businessService

• The binding template can be best seen as a folder 
where all the technical information of a service is put



tModel (1)

• A tModel is a generic container of information 
where designers can write any technical information 
associated to the use of a Web service:

– the actual interface and protocol used, including a pointer 
to the WSDL description

– description of the business protocol and conversations 
supported by the service

– “any concept that is not better represented by one of the 
other UDDI data structures”



tModel (2)

• A tModel is a document with a short description of 
the technical information and a pointer to the actual 
information. It contains:

– tModelKey
– Name & Description
– overviewDoc: (with an overview URL and useType that 

indicate where to find the information and its format, e.g., 
“text”or “wsdldescription”)

– identifierBag& categoryBag

• A tModel can point to other tModels and eventually 
different forms of tModels will be standardized 
(tModel for WSDL services, tModels for EDI based 
services, etc.)



UDDI data model



Inquiry and publishing interface



UDDI interfaces (1)

• The UDDI specification provides a number of APIs 
(Application Program Interfaces) that provide access 
to an UDDI system:

– UDDI Inquiry: to locate and find details about entries in an 
UDDI registry. Support a number of patterns (browsing, 
drill-down, invocation)

– UDDI Publication: to publish and modify information in an 
UDDI registry. All operations in this API are atomic in the 
transactional sense

– UDDI Security: for access control to the UDDI registry 
(token based)

– UDDI Subscription: allows clients to subscribe to changes to 
information in the UDDI registry (the changes can be 
scoped in the subscription request)



UDDI interfaces (2)

– UDDI Replication: how to perform replication of information 
across nodes in an UDDI registry

– UDDI Custody and Ownership transfer: to change the 
owner (publisher) of information and ship custody from one 
node to another within an UDDI registry

• UDDI also provides a set of APIs for clients of an 
UDDI system:

UDDI Subscription Listener: the client side of the subscription 
API

UDDI Value Set: used to validate the information provided to 
an UDDI registry



Inquiry API (1)

• Search and lookup entries in a registry

• This API is freely available, no client authentication 
is required

• Errors are reported as SOAP Faults 

• Browse functions search the registry based on 
keywords and return summary lists with overview 
information (key, name and description) about 
matching businesses or services



Inquiry API (2)

• Find qualifiers are used to sort the results and to 
control the keyword matching: toggle between 
AND/OR, case sensitive/insensitive, use of wildcards 
and categories

• To minimize the number of requests, find queries 
can be nested



Inquiry API (3)



Security API (1)

• Publish, update and delete information contained 
in an UDDI registry

• The publishing API requires user authentication 
using a session token and typically uses SOAP over 
HTTPS

• The registry performs access control for all 
publishing functions: information about the entries 
can only be edited by the owner



Security API (2)

• Category information and keyed references 
associated to the entries are validated before 
accepting new information into the registry

• Deletion functions are used to remove entries 
identified by their key from the registry. Removing a 
business will remove all services associated with it 



Security API (3)



UDDI summary (1)

• The UDDI specification is rather complete and 
encompasses many aspects of an UDDI registry 
from its use to its distribution across several nodes 
and the consistency of the data in a distributed 
registry

• Most UDDI registries are private and typically 
serve as the source of documentation for integration 
efforts based on Web services



UDDI summary (2)

• UDDI registries are not necessarily intended as 
the final repository of the information pertaining 
Web services. Even in the “universal” version of the 
repository, the idea is to standardize basic functions 
and then built proprietary tools that exploit the 
basic repository. That way it is possible to both 
tailor the design and maintain the necessary 
compatibility across repositories



UDDI summary (3)

• While being the most visible part of the efforts 
around Web services, UDDI is perhaps the least 
critical due to the complexities of B2B interactions 
(establishing trust, contracts, legal constrains and 
procedures, etc.). The ultimate goal is, of course, 
full automation, but until that happens a long list of 
problems need to be resolved and much more 
standardization is necessary



UDDI limitations (1)

• There were a few universal UDDI registries in 
operation (maintained by IBM, Microsoft, SAP, etc)

• These registries were very visible and often the 
first thing one saw of Web services

• Most of the entries in them did not work or did not 
correspond to any real service



UDDI limitations (2)

• This has been a source of criticism to Web services 
in general. The criticism has not been entirely 
undeserved but it is often misguided: what was 
there to criticize was not UDDI itself but the use that 
was been made of it and the hype

• Supporting infrastructure for Web services in well 
defined and constrained environments (i.e., without 
public access and where there is a context that 
provides the missing information)



UDDI limitations (3)

• Most of the UDDI registries in place today are 
private registries operating inside companies (recall 
that the widest use of Web services today is for 
conventional EAI) or maintained by a set of 
companies in a private manner

• UDDI has now become the accepted way to 
document Web services and supply the information 
missing in WSDL descriptions



Public UDDI registries (1)

• Former UBR (UDDI Business Registry) nodes:
– IBM

Homepage: http://uddi.ibm.com/
Inquiry API: http://uddi.ibm.com/ubr/inquiryapi
Publish API: https://uddi.ibm.com/ubr/publishapi

– Microsoft
Homepage: http://uddi.microsoft.com/
Inquiry API: http://uddi.microsoft.com/inquire
Publish API : https://uddi.microsoft.com/publish

• The public UDDI Business registries provided by 
IBM, Microsoft and SAP have been discontinued since 
January 2006 
(http://uddi.microsoft.com/about/FAQshutdown.htm



Public UDDI registries (2)

• Since their launch in Sept. 2000, they accumulated 
over 50‘000 service registration entries

– SAP

Homepage: http://uddi.sap.com/

Inquiry API : http://uddi.sap.com/uddi/api/inquiry

Publish API : https://uddi.sap.com/uddi/api/publish

– NTT

Homepage: http://www.ntt.com/uddi/

Inquiry API : http://www.uddi.ne.jp/ubr/inquiryapi

Publish API : https://www.uddi.ne.jp/ubr/publishapi

FINE


