
Service Oriented Architectures

Module 1 - Basic technologies

Unit 5 – BPEL

Ernesto Damiani

Università di Milano

Lesson 9 – Process languages 
(Part II)



Data Transfer model (1)

• Data transfers define how (and when) services are 
supposed to exchange data

– Whiteboard

Service invocations read their input and deposit their results in 
a collection of variables. Each service invocation defines a 
mapping to and from the whiteboard. Data can also be copied 
explicitly among variables

– Data flow graph

Side-effects free, declarative model where services are 
connected with data flow dependencies, which define the source 
of their input data which is fetched at the appropriate time



Data Transfer model (2)



Dataflow graph



Exception handling (1)

• Important as service compositions should explicitly 
model what to do if a service is not available 
(timeout) or if its invocation fails

• Flow-based exception handling uses normal control 
flow constructs to branch after a service invocation 
has failed

• Try/Catch blocks are used in a similar way to 
associate an exception handler to a set of service 
invocations



Exception handling (2)

• Rules may also be associated to a composition in 
order to detect global exceptional conditions



Transaction (1)

• Transactional behavior is modeled by grouping 
service invocations and declaring the atomicity and 
isolation properties for the group

• In order to support long running transactions, each 
service operation can be also associated with a 
compensation handler, which is invoked only if the 
operation should be undone 

• When no failures occur, the composition engine 
runs a 2PC protocol with all services of the atomic 
region. If a failure occurs, the engine invokes the 
compensation handlers of the services which could be 
invoked successfully



Transaction (2)



WS BPEL (1)

• WS-BPEL is a standard proposal for specifying 
business process behavior based exclusively on Web 
services

• WS-BPEL is a language based on the XML syntax

• It does not directly deal with implementation of the 
language but only with the semantics of the 
primitives it provides

• The latest version of the specification is 2.0



WS BPEL (2)

• Originated as the fusion of XLANG (Microsoft) and 
WSFL (IBM) = as a result, there are formal problems 
with the language

• The language is used to define
– executable processes, with the actual interactions among 

different services. These processes can implement the 
internal business logic of a Web service (Composition)

– abstract processes, modeling the messages exchanged by 
the parties involved in a business protocol without revealing 
details about the internal implementation (Coordination)

• The goal is to define coordination and composition 
of Web services in a portable way



Composing Executable Processes

• Executable Processes describe the composition (or 
orchestration) of different Web service interfaces 
(WSDL Port Types)

• The result of a composition using BPEL is meant to 
be recursively published as a Web service



Using Abstract Processes (1)

• Abstract Processes define constraints on the WSDL 
interface of a Web service so that it can be used 
correctly

• Application Example: RosettaNetPIPs(Partner
Interface Processes) standardize interfaces and 
protocols along an e-Commerce supply chain

• The abstract (public) process for a Web service can 
be generalized from the concrete (private) 
executable implementation, if this is constructed 
using BPEL



Using Abstract Processes (2)

• The abstract process definition can also drive the 
implementation of the private executable process 
behind a Web service



Elements of WS-BPEL (1)

– Partners

– Properties

– Correlation sets

– Variables Scopes

– Fault Handlers

– Compensation Handlers

– Event Handlers

– Activities
Structured activities

Simple activities



Elements of WS-BPEL (2)

– These elements are equivalent to declarations in a normal 
programming language. They define the way services are 
to be called, which data is to be used and which data is to 
be treated as stateful

– These elements establish what the process does, how it 
reacts under different circumstances (errors, message 
arrivals, events, etc.), and how data flows from one step 
to the next



Partner Link Types (1)

• The concept of partners is used to define the Web 
services that are to be invoked as part of the 
process. It is based on three elements:

– Partner Link Type: it contains two PortTypes(WSDL), one 
for each of the roles in the partner entry (i.e., one 
portTypebelongs to the process itself, the other one is the 
portTypeof the service being invoked). Partner link types 
are not stored in a process, but usually extend a WSDL 
document

– Partner Link: the actual link to the service. This is where the 
actual assignment to a binding is made (outside the scope 
of BPEL). Several partner links may share the same partner 
link type

– Partners: a group of Partner Links (this is an optional 
element). A partner link can only appear in one partner



Partner Link Types (2)



Example



Example Partner Links



Properties (1)

• Properties give a global and abstract definition of 
data elements which are intended to be used to 
correlate messages with process instances. (e.g., 
order numbers)

• Property aliases map such properties to specific 
message types. This ensures that the same property 
can be reused across different messages



Properties (2)

• Correlation sets are a named group of properties 
used to uniquely identify a stateful conversation 
that is handled by a process. They define a mapping 
among data, messages and properties that help a 
process instance identify the messages that should 
be handled by itself



Correlation sets (1)

• Correlation is used when receiving asynchronous 
messages

• Correlation sets are referred from activities which 
involve the exchange of a message with external 
partners

• The content of each message is checked against the 
correlation set to establish the link between the 
message and the corresponding process instance



Correlation sets (2)

• A correlation set is initialized once the first 
message of the conversation is exchanged and 
cannot be changed during the rest of the interaction

• Correlation properties must be set to unique 
values among all process instances



Variables and assignment (1)

• Variables can be used to store:
– the content of the SOAP messages that are exchanged with 

the partners (with message Typesdefined as part of the 
WSDL interface description)

– intermediate, temporary data used in the business logic of 
the process to generate messages

– private data that holds the internal state of the process 
(e.g., counters)

• Variables are referenced by activities which 
exchange messages in order to define from where to 
read the content of a message and where the 
received message should be stored



Variables and assignment (2)

• The entire content of variables (or only parts) can 
also be copied from a different variable with an 
<assign> activity

• The <assign> activity can also be used to assign 
constant values and apply XPathqueries to 
messages in order to extract relevant information



Fault handling

• A form of block-based exception handling that 
uses <catch> blocks to handle the receipt of fault 
messages or explicit exceptions (<throw>). Once 
an exception is caught, the necessary logic for 
correcting failures can be programmed into the 
business process

• Fault handlers are a basic component for fault 
tolerance and fulfil the same role as exception 
handlers in normal programming languages. Every 
process needs to have this type of handlers



Compensation

• Additionally, if a failure occurs, already (and 
successfully) completed activities can be undone by 
using BPEL’s advanced rollback capabilities

• Compensation handlers are a legacy of advanced 
transaction model sand map very well to the notion 
of transactional coordination espoused by WS-
Coordination and WS-Transactions

• Compensation handlers assume the process 
contains the entire logic of what is to be done, 
something that it is rarely true in complex 
processes



Compensation handling example

• An order management process charges the 
customer using a credit card service and removes the 
ordered item from the inventory service

• If either of the two services fail, the other should be 
compensated



Simple activities

• The actual operations the process will complete:
– <receive> blocks until a message is received

– <reply> sends a message in response to a received message

– <invoke> sends a message to invoke an remote operation

– <assign> updates the value of variables

– <wait> suspends execution for a given time period

– <empty> no-op used for synchronization purposes

– <terminate> finishes the process

– <throw>, <rethrow> raises a fault for a fault handler to catch

– <catch>, <catchAll> catches a fault of a given type

– <compensate> undo the effects of completed activities



Structured activities

• Define the control flow dependencies in a hierarchical 
manner by nesting the following elements:

– <sequence> executes a set of activities one after another

– <switch> chooses between a set of activities (v1.1)

– <while> repeats depending on certain conditions

– <flow> executes a set of parallel activities (with arbitrary 
control flow dependencies)

– <pick> waits for alternative messages or an alarm and 
branches according to the one that arrived first

• <scope> defines a block of activities



Control flow



Control flow links



Extensions (1)

• BPEL Extensions
– Several extensions have been proposed to deal with 

different aspects that are not supported by the current 2.0 
specification

• BPELJ
– Java Code Snippets can be embedded into the BPEL process 

definition

– These are used for expressing complex branching (and loop) 
conditions, variable initializations and message 
transformation

– This extension also defines how a BPEL process can directly 
call J2EE components



Extensions (2)

• BPEL4Sub-Processes
– Modularize and reuse process definitions. Define how to call 

a process from another one.

• BPEL4PEOPLE
– Human tasks and human workflow support

– The <invoke> activity are tagged with the <staff> element 
to model the invocation of the services provided by a human 
resource

– Similar to traditional workflow management systems, the 
invocation is qualified by describing the organizational role 
of the user interacting with the process

FINE


