
Service Oriented Architectures

Module 1 - Basic technologies

Fulvio Frati

DTI - Università degli Studi di Milano

XML Signature

XML Signature

“XML Signatures provide integrity, message
authentication, and/or signer authentication services
for data of any type…”

W3C Recommendation 10 June 2008

Data objects are digested, the resulting value is
placed in an element (with other information) and
that element is then digested and cryptographically
signed

Signature Types - 1

Enveloped: the XML signature will itself be
embedded within the signed document

XML Resource

Signed XML Element

XML Signature 1

XML Signature 2

Signature Types - 2

Enveloping: the signed data is actually embedded
within the XML signature element

XML Resource

Signed XML Element

XML Signature

Signature Types - 3

Detached: the signed entities and the XML
signature are separate

XML Resource

Signed Data
XML Signature

Signature Generation

The sender generates a small unique a hash or digest of the document

Every minor change will cause the hash value to change

By comparing the hash that was received with the hash calculated from
the received document, the recipient can verify whether the document
was altered.

Signature Verification

The hash of the document signed or encrypted with the sender's private key acts as a
digital signature for the document

The recipient will be able to verify or decrypt the signature by taking a hash of the message
and verifying it with the signature that accompanied the message and the sender's public
key.

Signature Scopes

The digital signature protocol helps to ensures the following:

• The signature is authentic.
When the receiver verifies the message with the sender's public key, the
receiver knows that the sender signed it.

• The signature cannot be forged.
Only the sender knows his or her private key.

• The signature is not reusable.
The signature is a function of the document and cannot be transferred to
any other document.

• The signed document is unalterable.
If there is any alteration to the document, the signature verification will
fail at the receiver's end because the hash value will be recomputed and
will differ from the original hash value.

• The signature cannot be repudiated.
The sender cannot deny previous committed actions, and the receiver
does not need the sender's help to verify the sender's signature.

Signed XML Example

Signature Tags: Signature

Root element of an XML Signature

Contains SignedInfo, SignatureValue, KeyInfo (0/1),
and Object (0+)

Signature Tags: SignedInfo

Includes

canonicalization algorithm, specifies the algorithm applied to prepare the document for signing

signature algorithm, specifies the algorithm used for signature generation and validation

transform algorithms, indicates how the signer obtained the data object that was digested

digest method, identifies the digest algorithm to be applied to the signed object

digest value, element that contains the encoded (base64) value of the digest

Signature Tags: SignatureValue

Contains the actual value of the digital signature

It is always encoded using base64

Signature Tags: KeyInfo

Indicates the method to obtain the key needed to validate the signature

keyName, contains a string identifier related to the key pair used to sign the message

keyValue, contains a single public key that may be useful in validating the signature

DSAKeyValue, specifies fields for encription/decription based on DSA Signature Algorithm

X509Data, contains one or more identifiers of keys or X509 certificates (or certificates' identifiers or a revocation list)

RetrievalMethod, convey a reference to KeyInfo information that is stored at another location

C & Java Frameworks

Several implementation of W3C recommendations
are available in most common programming
languages

We focus on:
• XMLSec C Library

• Java XML Digital Signature API (javax.crypto package)

C - XMLSec

XML Security Library (XMLSec) provides support for
XML Digital Signature and XML Encryption.

It is based on LibXML/LibXSLT and can use practicaly
any crypto library (currently support for OpenSSL,
GnuTLS and NSS).

XMLSec: Initialize Libraries
/* Init libxml and libxslt libraries */

xmlInitParser();

LIBXML_TEST_VERSION

xmlLoadExtDtdDefaultValue = XML_DETECT_IDS | XML_COMPLETE_ATTRS;

xmlSubstituteEntitiesDefault(1);

/* Init xmlsec library */

if(xmlSecInit() < 0) {

fprintf(stderr, "Error: xmlsec initialization failed.\n");

return(-1);

}

/* Init crypto library */

if(xmlSecCryptoAppInit(NULL) < 0) {

fprintf(stderr, "Error: crypto initialization failed.\n");

return(-1);

}

/* Init xmlsec-crypto library */

if(xmlSecCryptoInit() < 0) {

fprintf(stderr, "Error: xmlsec-crypto initialization failed.\n");

return(-1);

}

XMLSec: Sign File - 1
/* load template */

doc = xmlParseFile(tmpl_file);

if ((doc == NULL) || (xmlDocGetRootElement(doc) == NULL)){

fprintf(stderr, "Error: unable to parse file \"%s\"\n", tmpl_file);

goto done;

}

/* find root node in the document to sign and retrieve signature parameters directly from XML */

node = xmlSecFindNode(xmlDocGetRootElement(doc), xmlSecNodeSignature, xmlSecDSigNs);

if(node == NULL) {

fprintf(stderr, "Error: start node not found in \"%s\"\n", tmpl_file);

goto done;

}

/* create signature context */

dsigCtx = xmlSecDSigCtxCreate(NULL);

if(dsigCtx == NULL) {

fprintf(stderr,"Error: failed to create signature context\n");

goto done;

}

XMLSec: Sign File - 2
/* load private key, assuming that there is not password – private key file (*.pem) supplied by user */

dsigCtx->signKey = xmlSecCryptoAppKeyLoad(key_file, xmlSecKeyDataFormatPem, NULL, NULL, NULL);

if(dsigCtx->signKey == NULL) {

fprintf(stderr,"Error: failed to load private pem key from \"%s\"\n", key_file);

goto done;

}

/* set key name to the file name, this is just an example! */

if(xmlSecKeySetName(dsigCtx->signKey, key_file) < 0) {

fprintf(stderr,"Error: failed to set key name for key from \"%s\"\n", key_file);

goto done;

}

/* sign the template */

if(xmlSecDSigCtxSign(dsigCtx, node) < 0) {

fprintf(stderr,"Error: signature failed\n");

goto done;

}

/* print signed document to stdout */

xmlDocDump(stdout, doc);

/* success */

res = 0;

XML Document to Sign
<?xml version="1.0" encoding="UTF-8"?>

<!–

XML Security Library example: Simple signature template file for sign1 example.

-->

<Envelope xmlns="urn:envelope">

<Data>

Hello, World!

</Data>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm=

"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod Algorithm = "http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>

<DigestMethod Algorithm = "http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue></DigestValue>

</Reference>

</SignedInfo>

<SignatureValue/>

<KeyInfo>

<KeyName/>

</KeyInfo>

</Signature>

</Envelope>

Data to Sign

Signature Parameters

Signed XML Document
<Envelope xmlns="urn:envelope">

<Data>

Hello, World!

</Data>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm=

"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod Algorithm = "http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>

<DigestMethod Algorithm = "http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>9H/rQr2Axe9hYTV2n/tCp+3UIQQ=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>Mx4psIy9/UY+u8QBJRDrwQWKRaCGz0WOVftyDzAe6WHAFSjMNr7qb2ojq9kdipT8

Oub5q2OQ7mzdSLiiejkrO1VeqM/90yEIGI4En6KEB6ArEzw+iq4N1wm6EptcyxXx

M9StAOOa9ilWYqR9Tfx3SW1urUIuKYgUitxsONiUHBVaW6HeX51bsXoTF++4ZI+D

jiPBjN4HHmr0cbJ6BXk91S27ffZIfp1Qj5nL9onFLUGbR6EFgu2luiRzQbPuM2tP

XxyI7GZ8AfHnRJK28ARvBC9oi+O1ej20S79CIV7gdBxbLbFprozBHAwOEC57YgJc

x+YEjSjcO7SBIR1FiUA7pw==

</SignatureValue>

<KeyInfo>

<KeyName>rsakey.pem</KeyName>

</KeyInfo>

</Signature>

</Envelope>

Signature Values

XMLSec: Verify - 1
/* load file */

doc = xmlParseFile(xml_file);

if ((doc == NULL) || (xmlDocGetRootElement(doc) == NULL)){

fprintf(stderr, "Error: unable to parse file \"%s\"\n", xml_file);

goto done;

}

/* find root node in the document to sign and retrieve signature parameters directly from XML */

node = xmlSecFindNode(xmlDocGetRootElement(doc), xmlSecNodeSignature, xmlSecDSigNs);

if(node == NULL) {

fprintf(stderr, "Error: start node not found in \"%s\"\n", xml_file);

goto done;

}

/* create signature context */

dsigCtx = xmlSecDSigCtxCreate(NULL);

if(dsigCtx == NULL) {

fprintf(stderr,"Error: failed to create signature context\n");

goto done;

}

/* load public key - private key file (*.pem) supplied by user */

dsigCtx->signKey = xmlSecCryptoAppKeyLoad(key_file, xmlSecKeyDataFormatPem, NULL, NULL, NULL);

if(dsigCtx->signKey == NULL) {

fprintf(stderr,"Error: failed to load public pem key from \"%s\"\n", key_file);

goto done;

}

XMLSec: Verify - 2
/* set key name to the file name, this is just an example! */

if(xmlSecKeySetName(dsigCtx->signKey, key_file) < 0) {

fprintf(stderr,"Error: failed to set key name for key from \"%s\"\n", key_file);

goto done;

}

/* Verify signature */

if(xmlSecDSigCtxVerify(dsigCtx, node) < 0) {

fprintf(stderr,"Error: signature verify\n");

goto done;

}

/* print verification result to stdout */

if(dsigCtx->status == xmlSecDSigStatusSucceeded) {

fprintf(stdout, "Signature is OK\n");

} else {

fprintf(stdout, "Signature is INVALID\n");

}

XMLSEC Practical Example

Java Digital XML Signature APIs

Provides support for various implementations of
digital signature algorithms and transforms as
specified by W3C's XML-signature syntax and
processing specification

The javax.xml.crypto package contains common
classes that are used to perform XML cryptographic
operations such as generating and verifying XML
signatures

Java - Signature Generation - 1

Generate an enveloped XML Signature using the XML Digital
Signature API

1- Use a JAXP DocumentBuilderFactory to parse the XML
document to sign

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

2- Get an instance of a DocumentBuilder, used to parse the
document

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

Java - Signature Generation - 2

3- Create a DSA KeyPair with a length of 512 byte (only for this
example);

• the private key is usually previously generated and stored in
a KeyStore file with an associated public key certificate

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
kpg.initialize(512);
KeyPair kp = kpg.generateKeyPair();

4- Create an XML Digital Signature XMLSignContext containing
input parameters for generating the signature

• two parameters, the private key that will be used to sign the document and
the root of the document to be signed

DOMSignContext dsc =
new DOMSignContext (kp.getPrivate(), doc.getDocumentElement());

Java - Signature Generation - 3

5- assemble the different parts of the Signature element into
an XMLSignature object

XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM")

6- Add the Reference part passing the document to sign, the
digest method, the type of transform
Reference ref = fac.newReference
("", fac.newDigestMethod(DigestMethod.SHA1,null),
Collections.singletonList fac.newTransform(Transform.ENVELOPED,
(TransformParameterSpec) null)), null, null);

7- create the SignedInfo object passing the Canonicalization
method, the Signature method, and the References
SignedInfo si = fac.newSignedInfo(fac.newCanonicalizationMethod
(CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,(C14NMethodParameterSpec) null),
fac.newSignatureMethod(SignatureMethod.DSA_SHA1, null),
Collections.singletonList(ref));

Java - Signature Generation - 4

8- Create the optional KeyInfo object
• Enables the recipient to find the key needed to validate the

signature

KeyInfoFactory kif = fac.getKeyInfoFactory();

KeyValue kv = kif.newKeyValue(kp.getPublic());

KeyInfo ki = kif.newKeyInfo(Collections.singletonList(kv));

9- Create the XMLSignature object, passing as
parameters the SignedInfo and KeyInfo objects
XMLSignature signature = fac.newXMLSignature(si, ki);

Java - Signature Validation - 1

1- Use a JAXP DocumentBuilderFactory to parse the XML
document containing the Signature
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);

2- Get an instance of a DocumentBuilder to parse the document
DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FileInputStream(argv[0]));

3- Specify the Signature element to validate passing the XML
Signature namespace URI and the tag name of
the Signature element
NodeList nl = doc.getElementsByTagNameNS(XMLSignature.XMLNS, "Signature");
if (nl.getLength() == 0) {

throw new Exception("Cannot find Signature element");
}

Java - Signature Verification - 2

4- Create an XMLValidateContext instance for
validating the signature

• Parameters: a KeyValueKeySelector object and a reference to
the Signature element to be validated

DOMValidateContext valContext =
new DOMValidateContext (new KeyValueKeySelector(), nl.item(0));

5- Extract the contents of the Signature element
(unmarshalling) into an XMLSignature object
XMLSignatureFactory factory = XMLSignatureFactory.getInstance("DOM");
XMLSignature signature = factory.unmarshalXMLSignature(valContext);

6- Validate the signature
boolean coreValidity = signature.validate(valContext);

Java - Signature Verification - 3

If the XMLSignature.validate method returns false,

we can try to narrow down the cause of the failure
• Signature validation: the cryptographic verification of the

signature

boolean sv = signature.getSignatureValue().validate(valContext);

• Reference validation: the verification of the digest of each
reference in the signature

boolean refValid = ((Reference) i.next()).validate(valContext);

Java Practical Example

References

W3C XML Signature Syntax and Processing

http://www.w3.org/TR/xmldsig-core/

XML Digital Signature API
http://java.sun.com/javase/6/docs/technotes/guides/security/xmldsig/XMLDigitalSignature.html

XML Security Library
http://www.aleksey.com/xmlsec/

FINE

