XML Signature

Fulvio Frati

DTI - Universita degli Studi di Milano

XML Signhature

“XML Signatures provide integrity, message
authentication, and/or signer authentication services

for data of any type...”

W3C Recommendation 10 June 2008

Data objects are digested, the resulting value Is
placed in an element (with other information) and
that element is then digested and cryptographically

signec

Signature Types - 1

Enveloped: the XML signhature will itself be
embedded within the signed document

Sighature Types - 2

Enveloping: the signhed data is actually embedded
within the XML signature element

Signhature Types - 3

Detached: the signed entities and the XML
signature are separate

Sighature Generation
Digital Signature Creation

faegsages with amechasndem anel W o
Lgna - 14 F o (11T i =1 1
ignaure [14]. A digtal signature verifies the Hash Message Digest
vtk eriticiT of el i dorame-te ad itproside IWWFESIFE dg R AT TR W Crilid=
tronger g :ourily than thet hanchoril e
martera-s
T 4 I

R

S-Pﬁvm Kﬁl S:gnnmm
-' Wiy Col J'J- u. by ”_
Messmze Digest Iy o=
o e | [[[[_Enee - ; it
ETlirmeC ‘_”"', £ T3 R A
“HhePnCaaHr=

ﬂ:l—,C

The sender generates a small unique a hash or digest of the document

Every minor change will cause the hash value to change

By comparing the hash that was received with the hash calculated from
the received document, the recipient can verify whether the document

was altered.

Signhature Verification

Digital Signature Verification

Fablie zey Cryplographe erables sierioome 1

tessiens with o v e thandi | g .
e D Hash o
signabure [14]. & digital sizugus vesfies the / 4 i g]
uinenlicity of elecooniz doomments anditprovides

Tt eder Lo creste & digitsl sgstre [Figare 2, irs

mall vk e thowbpere of he docomert, 1alle

el
C“g -
T IegCc Lot AF quib Sulind oy SUNL-2500 oOohFP iy 2 S‘Puhhl: Key | LY

AngF FOF B TOUE VWAMQ ARt Vo0 ek THvaC P Messoagge Digest

I T EIsAvoivmalfa i prify e dilertec Fhdg Tp I 35 R LA k LY

Decrypt
W s le Kb i ' EYNENTRSIET g T AT R Wil
TTHCIAR LC=Iwen CraHT= %

The hash of the document signed or encrypted with the sender's private key acts as a
digital signature for the document

The recipient will be able to verify or decrypt the signature by taking a hash of the message
and verifying it with the signature that accompanied the message and the sender's public
key.

Sighature Scopes

The digital signature protocol helps to ensures the following:

The signature is authentic.
When the receiver verifies the message with the sender's public key, the
receiver knows that the sender signed it.

The signature cannot be forged.
Only the sender knows his or her private key.

The signature is not reusable.
The signature is a function of the document and cannot be transferred to
any other document.

The sighed document is unalterable.

If there is any alteration to the document, the signature verification will
fail at the receiver's end because the hash value will be recomputed and
will differ from the original hash value.

The signature cannot be repudiated.
The sender cannot deny previous committed actions, and the receiver
does not need the sender's help to verify the sender’'s signature.

Signhed XML Example

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Envelcope zmlns="urn:envelops">
<data>
Hello world!
</data>
<Signature ¥xmlns="http://www.w3.o0rqg/2000/0%/xmldsig®">

<SignedInfo>
<CanonicalizationMethod Algorithm="http://www
<SignatureMethod Algorithm="http://www
<Reference URI=""2>
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09%/xmlds3i & ped-s3 re"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.o0rg/2000/0%/xmldsig#shal"/>
<DigestValue>Do]WQRTQyswPEYLsWEaKBhTEqQJRQ=</DigestValue>
</Reference>

</SignedInfo>

.org/TR/2001/REC-xml-cl14n-20010315fWithComments" />
W3.org/2000/0%/xmldsigfdsa—-shal”/>

<SignatureValue>chErWdiv850i27bYtChygD6yLHticdAIZ2gXEnUMr2xUIMIStGtFNOA==</SignaturevValue>
<FeyInfo>

<FeyValuel
<DSAFeyValuel
<P>»/EKaCzodSyrom78z3EQEShbbB4sFTeyi0etEIIB64AWFE4BE luRpHSt Y] QTxeEulImbzREMgzVDZEVGSxDTnN 1 kuFw==</>
<0»liT7dzDacuce?7IgTmtgEm2 TRuUOMU=< /0>
<ErZ4RxsngeSETpGknFFH2 xgaryRPEBaQO1khpMdALRQNGS54 1 Awtx /X PaFSEBpsy4pNWMOHCBINUONogpsQWSQvn 1 MpA==</C>

<¥>»gOVbREBsYEB8t8/hvongEmzU4XRtRgSZWeb1QJTSpFKEOXLNnlwaAD14Hl1tCwukBbg+V1algaveSn8gwalB4FTTTQ==</Y>
</DSAKeyValue>

</KeyValue>
</KeyInfo>
</Signature>
</Envelope>

Sighature Tags: Signhature

<?xml wversion="1.0" encoding—"IT?—S" standalone="no"?>
<Envelope #¥mlns="urn:envelops">
<datal

Hello world!

</data>
<Signature xmlns="http://www.w3.org/2000/08/xmldsig®">

:Hdl;:a—i:rh::::ﬁ a2l gor ithm="http://www.w3.0rg/TE/2001/REC-xml-cl14n-20010315fWithComments" />
' 0/05/xm] #d

LR__1F 1!}

h:ﬁ 2l Lgori ithm="http://www.w

tureValue>chErWwdivE850i2 Th¥tChygDeyLHticdAIZgXEnUMr2xUIMIStGtFNOA==</SignaturevValue>
SAR yvalue>
<P>/KaCzo45yrom78z3EQSShbbB4sFTeyi80etKIIS64AWFG64BE1luRpHSt 9 QTxeEUlImbzRMgeVDZEKVEOxD TNl kuFw=—=</2>

<0>1i7dzDacuc67Ig TmtgEm2 TRuUOMU=</ >
<ErZ4RxsngcSETpGknFFHZxgaryRPRaQl 1 khpMALEONGE54 1 Awt 2/ X PaFSBpsy4pNWMOHCBINUONogpsQWsQvn 1 MpA==</C>
<¥>gOVbREsYELE/ hvongEmzU4XRtRgSEZWEbL1QITSpFkEOXINnlwaADl4Hl tCwukBbg+V1ialoaVeSn8gwa B4R T TTO==< /¥ >

</DSRFeyValue>

Root element of an XML Signature

Contains SignedIinfo, SignatureValue, Keylnfo (0/1),
and Object (0O+)

Sighature Tags: SighediInfo

<?xml wversion="1.0" encoding="UTF-8" standalone="no"?>
<Envelope #¥mlns="urn:envelops">

<datar>
Hello world!
</data>
<Signature xmlns="http://www.w3.org/2000/08/xmldsig®">
[:::::::£:> <SignedInfo>
<CancnicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-cl4n-20010315#WithComments" />
<SignatureMethod Algorithm="http://www.w3.0rg/2000/0%/xmldsig#dsa-shal"/>
<Reference URI="">
Transforms>
Transform Blgorithm="http://www.w3.org/2000/0%/xmldsigfenveloped-signature"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/0%/xmldsig#shal”/>
<DigestValue>DolWQTQyswPEYLSWEaKBhTEqQJRR=</DigestValus>
</Reference>
</SignedInfo
<SignatureValue>chErWdivE50i27bY¥tChygDeyLHticdAIZgXEnNUMr2xUIM1StGEtFNOA==</SignaturevValue>
<EeyInfo>
<FeyValuesl>
<DSEAFeyValue>
<P>/KaCzo45yrom78z3EQSShbbB4sFTeyi80etKIIS64AWFG64BE1luRpHSt 9 QTxeEUlImbzRMgeVDZEKVEOxD TNl kuFw=—=</2>

<0>»117dzDacun67Jg7mtgEmZ TRUOMU=< />
<ErZ4RxsngcSETpGknFFHZxgaryRPRaQl 1 khpMALEONGE54 1 Awt 2/ X PaFSBpsy4pNWMOHCBINUONogpsQWsQvn 1 MpA==</C>
<¥>gOVbREsYELE/ hvongEmzU4XRtRgSEZWEbL1QITSpFkEOXINnlwaADl4Hl tCwukBbg+V1ialoaVeSn8gwa B4R T TTO==< /¥ >
</DSRFeyValue>
ue>

M ot Hh o=
£

W

)
-

[R

O = H D

Bk
P 1]
MoV =
m
W

[

FATAY
T, Ty

=]
= (0

oW

</Enve

Includes
canonicalization algorithm, specifies the algorithm applied to prepare the document for signing
signature algorithm, specifies the algorithm used for signature generation and validation
transform algorithms, indicates how the signer obtained the data object that was digested
digest method, identifies the digest algorithm to be applied to the signed object

digest value, element that contains the encoded (base64) value of the digest

Sighature Tags: SignatureValue

<?xml wversion="1.0" encoding—"IT?—S" standalone="no"?>
<Envelope #¥mlns="urn:envelops">
<datar>
Hello world!
</data>
<Signature xmlns="http://www.w3.org/2000/08/xmldsig®">
:Hdl;:a—i:rh::::ﬁ Algorithm="http://www.w3.o0rg/TR/2001/REC-xml-cl4n-20010315fWithComments" />
tureMethod Algorithm="http://www ' 0/09/xmldsig#d

LR__1F 1!}

h:ﬁ 2l Lgori ithm="http://www.w

tureValue>chErWwdivE850i2 Th¥tChygDeyLHticdAIZgXEnUMr2xUIMIStGtFNOA==</SignaturevValue>
SAR yvalue>
<P>/KaCzo45yrom78z3EQSShbbB4sFTeyi80etKIIS64AWFG64BE1luRpHSt 9 QTxeEUlImbzRMgeVDZEKVEOxD TNl kuFw=—=</2>

<0>1i7dzDacuc67Ig TmtgEm2 TRuUOMU=</ >
<ErZ4RxsngcSETpGknFFHZxgaryRPRaQl 1 khpMALEONGE54 1 Awt 2/ X PaFSBpsy4pNWMOHCBINUONogpsQWsQvn 1 MpA==</C>
<¥>gOVbREsYELE/ hvongEmzU4XRtRgSEZWEbL1QITSpFkEOXINnlwaADl4Hl tCwukBbg+V1ialoaVeSn8gwa B4R T TTO==< /¥ >

</DSRFeyValue>

Contains the actual value of the digital signature

It Is always encoded using base64

Signhature Tags: KeylInfo

<?xml wversion="1.0" encoding—"IT?—S" standalone="no"?>
<Envelope #¥mlns="urn:envelops">
<datalr
Hello world!
</data>
{Sizratu:: ¥xmlns="http://www.w3.0rg/2000/0%/xmldsigs">
<SignedInfo>
<Cancnicalizati DrM—tFDP Algorithm="http://www.w3.o0rg/TR/2001/REC-xml-cl4n-20010315fWithComments" />
<SignatureMethod Algorithm="http: v ' 0/0%/=mldsig#d

.;fe:e_:e URI=""x>
<Transforms>

<Transform Algorithm="http://w
</Transforms>

:ijestM—tFDP Blgorithm="http://www.w /
<DigestValue>DojWRTRyswPEYLSWEaKShTEQJRQ= <f

{fﬁefe:e_ze
</SignedInfo>
<SignatureValue>chErWdivE50i27bY¥tChygDeyLHticdAIZgXEnNUMr2xUIM1StGEtFNOA==</SignaturevValue>
[:::::::t>> P
{KeyTaLueb
<DEAFeyValus>
<?>HKaCzo4Syrom?823EQ55bbB4EF?eyBDetKIIBE4WF64BBluRpHEtQjQTeruGImbzRquVDZkVGQxD?ankqu==<f?>

<0>1i7dzDacuc67Ig TmtgEm2 TRuUOMU=</ >

<ErZ4RxsngcSETpGknFFHZxgaryRPRaQl 1 khpMALEONGE54 1 Awt 2/ X PaFSBpsy4pNWMOHCBINUONogpsQWsQvn 1 MpA==</C>

<¥>gOVbREsYELE/ hvongEmzU4XRtRgSEZWEbL1QITSpFkEOXINnlwaADl4Hl tCwukBbg+V1ialoaVeSn8gwa B4R T TTO==< /¥ >
<f:53?*v*alue}

</FeyValue>
<H353:nfo>
</Signature
</Envelope>

Indicates the method to obtain the key needed to validate the signature
keyName, contains a string identifier related to the key pair used to sign the message
keyValue, contains a single public key that may be useful in validating the signature
DSAKeyValue, specifies fields for encription/decription based on DSA Signature Algorithm
X509Data, contains one or more identifiers of keys or X509 certificates (or certificates' identifiers or a revocation list)

RetrievalMethod, convey a reference to Keylnfo information that is stored at another location

C & Java Frameworks

Several implementation of W3C recommendations
are available in most common programming
languages

We focus on:

e XMLSec C Library
e Java XML Digital Signature APl (Javax.crypto package)

C - XMLSec

XML Security Library (XMLSec) provides support for
XML Digital Signature and XML Encryption.

It Is based on LIbXML/LiIbXSLT and can use practicaly

any crypto library (currently support for OpenSSL,
GnuTLS and NSS).

XMLSec: Initialize Libraries

/* Init libxml and libxslt libraries */

xmlInitParser();

LIBXML_TEST_VERSION

xmlLoadExtDtdDefaultValue = XML _DETECT_IDS | XML_COMPLETE_ATTRS;
xmlSubstituteEntitiesDefault(l);

/* Init xmlsec library */
if(xnlSechnit() < 0) {
fprintf(stderr, "Error: xmlsec initialization failed.\n");

return(-1);

/* Init crypto library */
if(xmlSecCryptoAppInit(NULL) < 0) {
fprintf(stderr, "Error: crypto initialization failed.\n");

return(-1);

/* Init xmlsec-crypto library */
if(xmlSecCryptolnit() < 0) {
fprintf(stderr, "Error: xmlsec-crypto initialization failed.\n");

return(-1);

XMLSec: Sign File

/* load template */
doc = xmlParseFile(tmpl_file);
if ((doc == NULL) |] (xmIDocGetRootElement(doc) == NULL)){
fprintf(stderr, "Error: unable to parse file \"%s\'\n"", tmpl_file);

goto done;

/* find root node in the document to sign and retrieve signature parameters directly from XML */
node = xmlSecFindNode(xmIDocGetRootElement(doc), xmISecNodeSignature, xmlSecDSigNs);
if(hode == NULL) {

fprintf(stderr, "Error: start node not found in \"2os\'"\n", tmpl_file);

goto done;

/™ create signature context */
dsigCtx = xmISecDSigCtxCreate(NULL);
if(dsigCtx == NULL) {
fprintf(stderr,”Error: failed to create signature context\n");

goto done;

XMLSec: Sign File - 2

/* load private key, assuming that there is not password — private key file (*.pem) supplied by user */
dsigCtx-=signKey = xmlSecCryptoAppKeyLoad(key_file, xmlSecKeyDataFormatPem, NULL, NULL, NULL);
if(dsigCtx->signKey == NULL) {

fprintf(stderr,"Error: failed to load private pem key from \"%os\'"\n", key file);

goto done;

/* set key name to the file name, this is just an example! */
if(xmlSecKeySetName(dsigCtx->signKey, key_ file) < 0) {
fprintf(stderr,"”Error: failed to set key name for key from \"%os\'"\n", key file);

goto done;

/> sign the template */
if(xmISecDSigCtxSign(dsigCtx, node) < 0) {
fprintf(stderr,"Error: signature failed\n");

goto done;
/> print signed document to stdout */
xmlIDocDump(stdout, doc);

/> success */

res = O;

XML Document to

<?xml version="1.0" encoding="UTF-8"?>

<I-

XML Security Library example: Simple signature template file for signl example.
-—>

<Envelope xmlns="urn:envelope'>

<Data>

Hello, World!

</Data> Data to Sign

<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#'">
<SignedInfo>

<Canonical izationMethod Algorithm=
"http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315""/>

<SignatureMethod Algorithm = "http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />

<Reference URI=""">
<Transforms>

<Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>

</Transforms>

<DigestMethod Algorithm = "http://www.w3.0rg/2000/09/xmldsig#shal™ />
<DigestValue></DigestValue>

</Reference>
</SignedInfo>
:Zi:::z:eval - Sig nature Parameters

<KeyName/>
</KeylInfo>

</Signature>

</Envelope>

Signed XML Document

<Envelope xmlns="urn:envelope">
<Data>
Hello, World!

</Data>

<Signature xmlns=" ">

<Signedinfo>

<CanonicalizationMethod Algorithm=
“ e

<SignatureMethod Algorithm = s

<Reference URE="">
<Transforms>

<Transform Algorithm=" s

</Transforms>

<DigestMethod Algorithm = " s

<DigestValue>9H/rQr2AxedhYTV2n/tCp+3UIQ0=</DigestvValue>
</Reference>

</Signedinfo>

<SignatureValue>Mx4psiy98/UY+u8QBIRDrwQWKRaCGzOWOVFtyDzAe6WHAFSIMNr7gb20jq9okdipT8
Oub5g20Q7mzdSLiiejkrO1VegM/90yEIGI4ENGKEBGArEZzw+ i g4NIwmBEptCy XXX
MOStACOa9i EWYgROTFX3SW1urUluKYgUitxsONiUHBVaWeHeX51bsXoTF++4Z1+D
JIPB§NAHHMrOcbJ6BXKk91S27FFZiTplQj5nL9onFLUGbREEFgu2iuiRzQbPUM2EP
Xxy 1 7GZ8ATHNRIK28ARVBCO0#+01e§20S79CEV7gdBxblLbFprozBHAWOECS7YgJc
X+YEjSjCO7SBIRLFIUAT pw==

</SignatureValue>

i Signature Values

<KeyName>rsakey . pem</KeyName>

</Keylinfo>

</Signature>

</Envelope>

XMLSec: Verify - 1

/* load file */

doc = xmlParseFile(xml_file);

if ((doc == NULL) || (xmIDocGetRootElement(doc) == NULL)){
fprintf(stderr, "Error: unable to parse file \""%s\'"'\n"", xml_file);

goto done;

by

/* find root node in the document to sign and retrieve signature parameters directly from XML */
node = xmlSecFindNode(xmIDocGetRootElement(doc), xmlISecNodeSignature, xmISecDSigNs);
if(hode == NULL) {

fprintf(stderr, "Error: start node not found in \"%s\'"\n", xml_file);
goto done;

¥

/* create signature context */
dsigCtx = xmlISecDSigCtxCreate(NULL);
if(dsigCtx == NULL) {
fprintf(stderr,”Error: failed to create signature context\n');
goto done;

¥

/* load public key - private key file (*.pem) supplied by user */
dsigCtx->signKey = xmlSecCryptoAppKeyLoad(key_file, xmlSecKeyDataFormatPem, NULL, NULL, NULL);
if(dsigCtx->signKey == NULL) {
fprintf(stderr,"”Error: failed to load public pem key from \"%os\'"\n", key_file);
goto done;

¥

XMLSec: Verifty - 2

/* set key name to the file name, this is just an example! */
If(xmlISecKeySetName(dsigCtx->signKey, key file) < 0) {
fprintf(stderr,”Error: failed to set key name for key from \"%s\'""\n", key_file);
goto done;

¥

/* Verity signature */
IT(xmISecDSigCtxVerify(dsigCtx, node) < 0) {
fprintf(stderr,”Error: signature verify\n');
goto done;

¥

/* print verification result to stdout */
If(dsigCtx->status == xmlSecDSigStatusSucceeded) {
fprintf(stdout, "Signature is OK\n");

¥ else {
fprintf(stdout, "Signature is INVALID\n");

¥

XMLSEC Practical Example

Java Digital XML Signature APIs

Provides support for various implementations of
digital signature algorithms and transforms as
specified by W3C's XML-signhature syntax and
processing specification

The javax.xml.crypto package contains common
classes that are used to perform XML cryptographic
operations such as generating and verifying XML
signatures

Java - Signature Generation - 1

Generate an enveloped XML Signhature using the XML Digital
Signature API

1- Use a JAXP DocumentBuilderFactory to parse the XML
document to sign

DocumentBui lderFactory dbf = DocumentBuilderFactory.newlnstance();

dbf.setNamespaceAware(true);

2- Get an instance of a DocumentBuilder, used to parse the
document

DocumentBui lder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FilelnputStream(argv[0]));

Java - Sighature Generation - 2

3- Create a DSA KeyPair with a length of 512 byte (only for this
example);

e the private key is usually previously generated and stored in
a KeyStore file with an associated public key certificate

KeyPairGenerator kpg = KeyPairGenerator.getlnstance(''DSA™);
kpg.initialize(512);
KeyPair kp = kpg.generateKeyPair();

4- Create an XML Digital Signature XMLSignContext containing
Input parameters for generating the signature

® two parameters, the private key that will be used to sign the document and
the root of the document to be signed

DOMSignContext dsc =
new DOMSignContext (kp.getPrivate(), doc.getDocumentElement());

Java - Signature Generation - 3

5- assemble the different parts of the Signature element into
an XMLSignature object

XMLSignatureFactory fac = XMLSignatureFactory.getlnstance(*'DOM™)

6- Add the Reference part passing the document to sign, the
digest method, the type of transform

Reference ref = fac.newReference
(", fac.newDigestMethod(DigestMethod.SHALl,null),
Collections.singletonList fac.newTransform(Transform.ENVELOPED,
(TransformParameterSpec) null)), null, null);

7- create the Signedlnfo object passing the Canonicalization
method, the Signature method, and the References

SignedInfo si = fac.newSignedInfo(fac.newCanonicalizationMethod
(CanonicalizationMethod. INCLUSIVE_WITH_COMMENTS, (C14NMethodParameterSpec) null),
fac.newSignatureMethod(SignatureMethod.DSA_ SHA1, null),
Collections.singletonList(ref));

Java - Signature Generation - 4

8- Create the optional Keylnfo object

e Enables the recipient to find the key needed to validate the
signature

KeyInfoFactory kif = fac.getKeylnfoFactory();
KeyValue kv = kif.newKeyValue(kp.getPublic());
KeyInfo ki = kif.newKeylnfo(Collections.singletonList(kv));

O- Create the XMLSignhature object, passing as

parameters the Signedinfo and Keylnfo objects
XMLS1gnhature signature = fac.newXMLSignhature(si, Ki);

Java - Signature Validation - 1

1- Use a JAXP DocumentBuilderFactory to parse the XML
document containing the Signature

DocumentBui lderFactory dbf = DocumentBuilderFactory.newlnstance();
dbf.setNamespaceAware(true);

2- Get an instance of a DocumentBuilder to parse the document

DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(new FilelnputStream(argv[0]));

3- Specify the Signature element to validate passing the XML
Sighature namespace URI and the tag name of
the Signhature element

NodeList nl = doc.getElementsByTagNameNS(XMLSignature.XMLNS, ''Signature');
iIT (nl.getLength() == 0) {
throw new Exception(*‘Cannot find Signature element™);

}

Java - Signature Verification - 2

4- Create an XMLValidateContext instance for

validating the signature

e Parameters: a KeyValueKeySelector object and a reference to
the Signature element to be validated

DOMVal 1dateContext valContext =
new DOMValidateContext (new KeyValueKeySelector(), nl.item(0));

5- Extract the contents of the Sighature element

(unmarshalling) into an XMLSignature object

XMLSignatureFactory factory = XMLSignatureFactory.getlnstance(''DOM™);
XMLSignature signature = factory.unmarshalXMLSignature(valContext);

6- Validate the signature

boolean coreValidity = signature.validate(valContext);

Java - Signature Verification - 3

If the XMLSignature.validate method returns false,
we can try to narrow down the cause of the failure

e Signature validation: the cryptographic verification of the
signature

boolean sv = signature.getSignatureValue() .validate(valContext);

e Reference validation: the verification of the digest of each
reference in the signature

boolean refValid = ((Reference) i1.next()).validate(valContext);

Java Practical Example

References

W3C XML Signature Syntax and Processing

http://www.w3.0rg/TR/xmldsig-core/

XML Digital Signature API

http://java.sun.com/javase/Z6/docs/technotes/quides/security/xmldsig/XMLDigitalSignature.html

XML Security Library

http:/Z//www.aleksey.com/xmlsec/

on

