
Friday 4th 09:00-09:50

Cryptographic and
Probabilistic Programming

Andrew D. Gordon
Microsoft Research and
University of Edinburgh

@AndrewDGordon #fosad2015

Agenda and Goals

• Lecture 1: Problem of Verifying Cryptographic Protocols

• Lecture 2: A Formal Calculus of Refinement Types

• Lecture 3: Verified Cryptographic Programs for Protocols

• Lecture 4: Probabilistic Programming and Security

• My goal in lectures 1-3 is to motivate, explain the basic
principles, and give examples, of a line of work on verifying
the actual implementation code of cryptographic protocols.

• My goal in the final lecture is to introduce the field of
probabilistic programming and discuss various security-
related applications.

Credits #fosad2015

• Mihhail Aizatulin, Andrew D. Gordon, Jan Jürjens: Extracting and verifying cryptographic models
from C protocol code by symbolic execution. ACM Conference on Computer and Communications
Security 2011:331-340

• Mihhail Aizatulin, Andrew D. Gordon, Jan Jürjens: Computational verification of C protocol
implementations by symbolic execution. ACM Conference on Computer and Communications
Security 2012:712-723

• Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, Sergio Maffeis:
Refinement types for secure implementations. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(2):8
(2011)

• Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub:
Implementing TLS with Verified Cryptographic Security. IEEE Symposium on Security and Privacy
2013:445-459

• Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon: Modular verification of security
protocol code by typing. POPL 2010:445-456

• Cédric Fournet, Karthikeyan Bhargavan, Andrew D. Gordon: Cryptographic Verification by Typing for
a Sample Protocol Implementation. FOSAD 2011:66-100

• François Dupressoir, Andrew D. Gordon, Jan Jürjens, David A. Naumann: Guiding a general-purpose
C verifier to prove cryptographic protocols. Journal of Computer Security (JCS) 22(5):823-866 (2014)

• Andrew D. Gordon, Cédric Fournet: Principles and Applications of Refinement Types. Logics and
Languages for Reliability and Security 2010:73-104

• Andrew D. Gordon, Thore Graepel, Nicolas Rolland and, Claudio V. Russo, Johannes Borgström, John
Guiver: Tabular: a schema-driven probabilistic programming language. POPL 2014:321-334

Problem of Verifying
Cryptographic Protocols

Cryptographic and Probabilistic
Programming, Part 1

Cryptographic Protocols
• Principals communicate over an untrusted network

– Our focus is on Internet protocols, but same principles apply to
banking, payment, and telephony protocols

• A range of security and privacy objectives is possible
– Message confidentiality – against release of contents
– Identity protection – against release of principal identities
– Message authentication – against impersonated access
– Message integrity – against tampering
– Message correlation – that a response matches a request
– Message freshness – against replays of old messages

• To achieve these goals, principals rely on applying
cryptographic algorithms to parts of messages, but also on
including message identifiers, nonces (unpredictable
quantities), and timestamps

Cryptographic protocols go wrong

• Historically, one keeps finding simple attacks against
protocols
– even carefully-written, widely-deployed protocols,

even a long time after their design & deployment
– simple = no need to break cryptographic primitives

• Why is it so difficult?
– breaking functional abstractions
– concurrency + distribution + cryptography

• Little control on the runtime environment

– active attackers
• hard to test

– implicit assumptions and goals
• Authenticity, secrecy

The Needham-Schroeder problem

A B

The Needham-Schroeder public-key authentication protocol (CACM 1978)

S

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

A,B

{| B,KB |}KS-1

B,A

{| A,KB |}KS-1

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}KS-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

In Using encryption for authentication in large networks of computers
(CACM 1978), Needham and Schroeder didn’t just initiate a field that
led to widely deployed protocols like Kerberos, SSL, SSH, IPSec, etc.

They threw down a gauntlet.

“Protocols such as those developed
here are prone to extremely subtle
errors that are unlikely to be
detected in normal operation.

The need for techniques to verify
the correctness of such protocols is
great, and we encourage those
interested in such problems to
consider this area.”

A B

The Needham-Schroeder public-key authentication protocol (CACM 1978)

S

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

A,B

{| B,KB |}KS-1

B,A

{| A,KA |}KS-1

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA |}KS-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

A B

Assuming A knows KB and B knows KA, we get the core protocol:

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

More precisely, the goals of the protocol are:
•After receiving message 6, A believes NA,NB shared just with B
•After receiving message 7, B believes NA,NB shared just with A

If these goals are met, A and B can subsequently rely on keys
derived from NA,NB to efficiently secure subsequent messages

A M

A certified user M can play a man-in-the-middle attack (Lowe 1995)

B

{| msg3(A,NA) |}KM

{| msg7(NB) |}KM

{| msg3(A,NA) |}KB

{| msg6(NA,NB) |}KA

{| msg6(NA,NB) |}KA

{| msg7(NB) |}KB

This run shows a certified user M can violate the protocol goals:
•After receiving message 6, A believes NA,NB shared just with M
•After receiving message 7, B believes NA,NB shared just with A

(Writing in the 70s, Needham and Schroeder assumed
certified users would not misbehave; we know now they do.)

A brief history: 1978—

A B

M

Hi Bob,
love Alice

Hate you,
Bob! -Alice

We assume that an intruder can interpose
a computer on all communication paths,
and thus can alter or copy parts of
messages, replay messages, or emit false
material. While this may seem an
extreme view, it is the only safe one when
designing authentication protocols.

Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”
1981: Denning and Sacco find attack on N&S symmetric key protocol
1983: Dolev and Yao first formalize secrecy properties of NS threat model using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; incomplete, but useful
1994: Hickman, Elgamal invent SSL; holes in v1, v2, but v3 fixes these, very widely deployed
1994: Ylonen invents SSH; holes in v1, but v2 good, very widely deployed
1995: Abadi, Anderson, Needham, et al propose various informal “robustness principles”
1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs
circa 2000: Several FMs for “D&Y problem”: tradeoff between accuracy and approximation
circa 2007: Many FMs developed; several deliver both accuracy and automation
2014: dozens of attacks against mainstream TLS implementations

Specs, code, and formal tools

TLS Kerberos

WS-Security
IPsec

SSH

Protocol Standards

Protocol Implementations and Applications

C/C++
Java

ML, F#

C#

Ruby

ProVerif (’01)

Casper

Cryptyc

AVISPA

Computational
Models

CryptoVerif (‘06)
EasyCrypt (‘11)
F7 (’11) RF*(’13)

Hand Proofs
NRL

Athena

Scyther

Securify

F7 (’08) F* (‘11)

General Verification

SMT Solvers

Theorem
Provers

Model
Checkers

Symbolic Models

Models: Formal vs Computational
Cryptography

• Two approaches for verifying protocols and programs

Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70’s)

– Structural view of protocols, using formal languages and methods

– Many automated verification tools, scales to large systems

Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80’s)

– Concrete, algorithmic view, using probabilistic polynomial-time machines

– New formal tools: CryptoVerif, Certicrypt, EasyCrypt

• Can we get the best of both worlds? Much ongoing work on
computational soundness for symbolic cryptography
(Abadi Rogaway, Backes Pfitzman Wagner, Warinschi,… mid 00’s)

– It works… with many mismatches, restrictions, and technicalities

– At best, one still needs to verify protocols symbolically

• Can we directly verify real-world protocols ?

Models vs implementations

• Protocol specifications remain largely informal
– They focus on message formats and interoperability,

not on local enforcement of security properties

• Models are short, abstract, hand-written
– They ignore large functional parts of implementations
– Their formulation is driven by verification techniques
– It is easy to write models that are safe but dysfunctional

(testing & debugging is difficult)

• Specs, models, and implementations drift apart…
– Even informal synchronization involves painful code reviews
– How to keep track of implementation changes?

From code to model

• Our approach: we directly verify
reference implementations
treated as “giant” protocol models

• Executable code is more detailed than models
– Some functional aspects can be ignored for security

– Model extraction can safely erase those aspects

• Executable code has better tool support
– Types, compilers, debuggers, libraries, verification

tools

Agenda for Rest of Lecture 1

• How to represent protocols and their correctness within
a concurrent functional language (F#/OCaml):
– Correspondence assertions as assume/assert

– Message-passing concurrency as in the pi-calculus

– Crypto modelled using Morris’ seal abstraction

– Protocol roles as functions (we’ll see the code in action)

– Opponent (attacker) is an arbitrary untyped expression

– Correctness as robust program safety

• Overall, we reduce crypto protocol verification to a program
verification problem

Example: Authenticated Message

• Security goal is simply authenticity, but not
confidentiality or freshness

• Shows essence of problem, with simplifying assumptions
– Assume one key, shared between two, fixed principals

– Assume principals use keys only in compliance with protocol

Client (C)
Service (S)

text HMAC(key,text)

assume Request(text)

assert Request(text)

Assume and Assert

• Suppose there is a global set of formulas, the log

• To evaluate assume C, add C to the log, and return ().

• To evaluate assert C, return ().
– If C logically follows from the logged formulas, we say the assertion

succeeds; otherwise, we say the assertion fails.

– The log is only for specification purposes; it does not affect execution

• assume Foo(); assert Bar(); assume Foo()Bar(); assert Bar()

• Our use of first-order logic predicates (like Foo()) generalizes
conventional assertions (like assert i>0 in Hoare logic)
– Such predicates usefully represent security-related concepts like roles,

permissions, events, compromises

Symmetric Crypto

Morris’ Seal Abstraction

J.H. Morris, Jr, Protection in Programming Languages, CACM 1973

Coding Crypto Library with Seals

Limits of Symbolic Models
• Dolev-Yao style symbolic models (including seals) have

effective proof techniques, but make strong assumptions:
– Message length is only partially observable

– No collisions: {M}K={M’}K’ implies M=M’ and K=K’

– Non-malleability: from {M}K cannot construct {M’}K

– No partial information: that attacker cannot guess half the bits of a
message, or know half in advance

– Keys are unguessable, even passwords

• Cryptographers rely on probabilistic computational models,
making fewer assumptions, but with fewer automated
reasoning techniques

• Justifying symbolic models via computational models (where
possible), or simply developing automation for the latter, is a
growing research area

Example: Authenticated Message

Client (C)
Service (S)

text HMAC(key,text)

assume Request(text)

assert Request(text)

let client text =
assume (Request(text));
let c = connect addr in
let mac = hmacsha1 k (pickle s)
send c (pickle (s,mac))

let server =
let c = listen addr in
let text,h = unpickle m in
let unpickle (hmacsha1Verify k (pickle text) h) in
assert(Request(text))

let _ = fork (fun _ -> client k "Hello")
let _ = server k

let addr : (string * hmac, unit) addr = http "http://localhost:7000/pwdmac" "“
let k = mkHKey()

 ./msg.exe
 Connecting to localhost:7000
 Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
 Listening at ::1:7000
 Received Request Hello

val addr : (content, content) Net.addr
val client : (string -> string)
val server : (unit -> unit)

The problem: can any attacker break any assertion, given:

We assume that an intruder can interpose a computer on all communication paths, and thus can alter
or copy parts of messages, replay messages, or emit false material. While this may seem an extreme
view, it is the only safe one when designing authentication protocols. Needham and Schroeder CACM (1978)

One Source, Two Tasks

Concrete
Crypto

Symbolic
Crypto

Some other
implementation

Verifier Crypto
NetPlatform (CLR)

InteroperabilitySymbolic
verification

Symbolic testing
& debugging

Application
Other

Libraries

AuthzMy code
My

protocol

Source code
(modules)

Symbolic
Model

Security
Goals

Summary of Lecture 1

• The problem of protocol vulnerabilities remains acute

• Verifying the actual protocol code may help

• We have recast prior work on modelling protocols within process
calculi (spi, applied pi) in the setting of ML with concurrency

• Security properties (authenticity, but secrecy too) are expressed
using program assertions

• In Lecture 2, we develop RCF – a formal foundation for ML with
concurrency – and its system of refinement types

• RCF is the basis for F7, a scalable verifier for protocol code

Friday 4th 10:10-11:00

A Formal Calculus for
Refinement Types

Cryptographic and Probabilistic
Programming, Part 2

F7: Refinement Types for F#
• We use extended interfaces (.fs7)

– We typecheck implementations

– Interfaces include types refined
with first-order formulas

– Only libraries security-specific

• F7 supports a large subset of F#

• F7 relies on external SMT solver to
discharge proof obligations

client.fs7

client.fs

file.fsi

Type
(F7) Prove

(Z3)

Compile
(F#)

Erase
types

crypto.fs7

RCF: Refined Concurrent FPC

• supports functional programming a la ML and Haskell,

• has concurrency in the style of process calculus,

• and refinement types, allowing correctness properties to be
stated in the style of dependent type theory.

• RCF is the theoretical basis for F7, but there is also a direct
implementation (done at Saarbruecken)

• My goal is to explain from first principles how we can show
the following RCF example is safe by typechecking:

RCF PART 1:
SYNTAX AND SEMANTICS

Origins of this Calculus
• RCF is an assembly of standard parts, generalizing some ad hoc

constructions in language-based security
– FPC (Plotkin 1985, Gunter 1992) – core of ML and Haskell

– Concurrency in style of the pi-calculus (Milner, Parrow, Walker 1989) but
for a lambda-calculus (like 80s languages PFL, Poly/ML, CML)

– Formal crypto is derivable by coding up seals (Morris 1973, Sumii and
Pierce 2002), not primitive as in eg spi calculus(Abadi and Gordon, 1997)

– Security specs via assume/assert (Floyd, Hoare, Dijkstra 1970s),
generalizing eg correspondences (Woo and Lam 1992)

– To check assertions statically, rely on dependent functions and pairs with
subtyping (Cardelli 1988) and refinement types (Pfenning 1992, ...) aka
predicate subtyping (as in PVS, and more recently Russell)

– Public/tainted kinds to track data that may flow to or from the opponent,
as in Cryptyc (Gordon, Jeffrey 2002)

RCF PART 2:
TYPES FOR SAFETY

Three Steps Toward Safety by Typing

1. We include refinement types {x : T | C}, whose values are
those of T that satisfy C

2. To exploit refinements, we add a judgment E |- C, meaning
that C follows from the refinement types in E

3. To manage refinement formulas, we need (1) dependent
versions of the function and pair types, and (2) subtyping

Type System and Theorem

RCF III: TYPES FOR ROBUST SAFETY

Safety Versus an Untyped Adversary

TYPE THEORIES BEHIND RCF

Summary of Lecture 2

• RCF is an assembly of standard parts, generalizing some ad
hoc constructions in language-based security

• It underpins F7, a scalable verifier for security code

• In the next lecture, we consider applications of F7, its
successor F*, and adaptations of this work to programs in C

• http://research.microsoft.com/F7

http://research.microsoft.com/F7

Friday 4th 17:00-18:00

Verified Cryptographic
Programs for Protocols

Cryptographic and Probabilistic
Programming, Part 3

The Rise of Code Verification

• Re security protocols and the Needham-Schroeder problem:
– The first 20 years of CSF has seen the Rise of Model Verification

– The next 20 years of CSF will see the Rise of Code Verification

• If we can verify code in the languages implementors actually
use, we can find and fix security properties as soon as protocols
are first implemented

• We may well do better to teach existing software verification
tools about the attacker, than to build from scratch

• Into the bargain, we'll detect other security bugs, eg, overruns,
using the same tools

From a Statement for Panel on “CSF: The Next Twenty Years” at CSF20, Venice, 2007

PROBLEM: CRYPTO SOFTWARE IN C

An Example Protocol

Client: Now connecting to localhost, port 4433.
Client: Preparing to send request: “What is the
weather like?” and session key:
3999b5700d08185232d9e435b517dcbb
Client: Sending message: pair | 10 | localhost |
1f824103efe80f26d8e6d9f77d35b845573b185e1
dcdec055372ea400c8418d7e5c6499689d3bff464
12c1012ef4d36d5b64fe996ddb0dcec6bc149cbcf
1c54d44b74f906f75aeac7a6329c8963ed09b21

Client: Received encrypted message:
6a64b21d6d93a65aead74fa820d7049fd661bd2a
9495deaef59c528b51e4042cb10a47d507e42c1c
132a8855b5d8081c46197131
Client: Received and authenticated response:
Look out the window.

Server: Now listening on localhost, port 4433.
Server: Accepted client connection.

Server: Received message: pair | 10 | localhost |
1f824103efe80f26d8e6d9f77d35b845573b185e1
dcdec055372ea400c8418d7e5c6499689d3bff464
12c1012ef4d36d5b64fe996ddb0dcec6bc149cbcf
1c54d44b74f906f75aeac7a6329c8963ed09b21
Server: Authenticated request: What is the
weather like?
Server: Authenticated session key:
3999b5700d08185232d9e435b517dcbb
Server: Preparing response: Look out the window.
Server: Sending encrypted message:
6a64b21d6d93a65aead74fa820d7049fd661bd2a
9495deaef59c528b51e4042cb10a47d507e42c1c
132a8855b5d8081c46197131

Model of the
protocol in the
ProVerif calculus

data conc1/2.
reduc fst(conc1(x0, x1)) = x0.
reduc snd(conc1(x0, x1)) = x1.

free c.
fun E/2.
reduc D(k, E(k, x)) = x.

$ proverif -in pi pvmodel.out | grep RESULT$ proverif -in pi pvmodel.out | grep RESULT
RESULT not ev:client_accept(x_23,y_24) is false.
RESULT ev:server_reply(x_219,y_220) ==> ev:client_begin(x_219) is true.
RESULT ev:client_accept(x_346,y_347) ==> ev:server_reply(x_346,y_347) is true
$

let B =
in(c, msg2);
in(c, var12);
new response1;
event server_reply(fst(D(kAB, snd(var12))), response1);
let var13 = E(snd(D(kAB, snd(var12))), response1) in
out(c, var13); 0.

process ! new kAB; (!A | !B)

let A = event client_begin(request);
new kS1;
let var1 = conc1(clientID, E(kAB, conc1(request, kS1))) in
out(c, var1);
in(c, msg1);
in(c, var2);
event client_accept(request, D(kS1, var2)); 0.

SOLUTION VIA SYMBOLIC EXECUTION

PhD work of Mihhail Aizatulin, papers at CCS 2011-2012

Model Extraction by Symbolic Execution

Computational Verification

• First security analysis of C code to
target a verifier for the probabilistic
computational model
(ie, not “perfect” symbolic crypto)

• Builds on Blanchet’s CryptoVerif

• Verify over 3000 LOC, more than any
prior work on cryptographic code in C 0 100 200 300 400 500

Metering(1)

Metering(3)

NSL

RPC

RPC-enc

Simple MAC

Simple XOR

CryptoVerif Models from C Code

Handwritten
CryptoVerif

Derived CryptoVerif

Model Extraction

• Allows automatic extraction of protocol model from code
– Assumes protocol follows a single correct run,

and any deviation should terminate immediately

– Tools allows protocol designer to write π-calculus in C

– Verification shows the model is correct,
but not the code, as it may follow other paths

• Future directions?
– Backpatch the code to terminate if it deviates from normal path

– Scale to more examples eg PolarSSL handshake

Towards Full Verification

• Proves memory safety and symbolic security of C code
– PhD work of Francois Dupressoir, paper

– Full verification based on the MSR VCC tool, but needs much
more interactive effort than symbolic execution

• Strategy: port theory of crypto from F7 to VCC
– Not preventing timing, power consumption, physical attacks

• Future challenge
– Work with Trusted Computing Group on TPM 2.0 chip – using

stylized ANSI-C as a normative “Machine+Human-Readable
Specification”

TPM

Main Lines of Related Work on C

• Csur [Goubault-Larrecq and Parrennes 2005] analyzes C code for secrecy
properties via a custom abstract interpretation.

• Pistachio [Udrea et al 2006] verifies compliance of C code with a rule-
based specification of the communication steps of a protocol, but doesn’t
show security of the specification.

• ASPIER [Chaki and Datta 2009] relies on security-specific software model-
checking techniques, obtaining good results on the main loop of OpenSSL.

• Corin and Manzano [2011] extend the KLEE symbolic execution engine to
represent the outcome of cryptographic algorithms symbolically.

• Cade and Blanchet [2013] compile the CryptoVerif input language to
Ocaml and obtain computational guarantees; an application is to the SSH
Transport Layer

• Almeida et al [2014] show correctness of implementations of secure and
verifiable computation over encrypted data using EasyCrypt.

F7: AN IMPLEMENTATION OF RCF

http://research.microsoft.com/F7

http://research.microsoft.com/F7

What Does F7 Prove By Typing?

Application

Protocol

CryptographyNetworking
Platform

(Certificates,
Passwords)

Adversary

Networking

Verification Goal: Robust Safety
Assume:
A = abstraction of libraries
P = protocol + application
I = protocol, library interface
For all adversaries O that use I,
all runs of program A P O are safe,
ie, every assertion succeeds

F7 on Example from Lecture 1

Implementing TLS
with Verified Cryptographic Security

Karthikeyan Bhargavan
Cédric Fournet

Markulf Kohlweiss
Alfredo Pironti

Pierre-Yves Strub

INRIA, Microsoft Research
and IMDEA

May 22, 2013

Transport Layer Security (1995—)
The most widely deployed
cryptographic protocol?

HTTPS, 802.1x (EAP),
FTPS, VPN, mail, VoIP, …

18 years of attacks,
fixes, and extensions

1995 – Netscape’s Secure Sockets Layer
1995 – SSL2
1996 – SSL3
1999 – TLS1.0 (RFC2246, ≈SSL3)
2006 – TLS1.1 (RFC4346)
2008 – TLS1.2 (RFC5246)

Many implementations

• SChannel, OpenSSL, NSS,
GnuTLS, JSSE, PolarSSL, …

• Several security patches every year

Many papers

• Well-understood, detailed specs
• Security theorems… mostly for small simple models of TLS

What can still possibly go wrong?

Protocol Logic
e.g. ambiguous messages

• cause servers to attribute
secrets to wrong clients

Cryptography
e.g. no fresh IV

• write applet to
realize adaptive
attack (BEAST)

Weak Algorithms
MD5, PKCS1, RC4, …

Implementation Errors
many critical bugs

TLS
DESIGN

Infrastructure
certificate management

Application
protocol configuration

TLS in F# & F7: miTLS
We develop and verify a reference implementation for SSL 3.0—TLS 1.2

1. Standard compliance: we closely follow the RFCs

– concrete message formats

– support for multiple ciphersuites, sessions and connections,
re-handshakes and resumptions, alerts, message fragmentation,…

– interop with other implementations such as web browsers and servers

2. Verified security: we structure our code to enable its
modular verification, from its main API down to
concrete assumptions on its base cryptography (e.g. RSA)

– formal computational security theorems
for a 5000-line functionality (automation required)

3. Experimental platform: for testing corner cases,
trying out attacks, analysing new extensions and patches, …

https://www.mitls.org

TLS Security Goals, Informally

TCP

Application

data

TLSCrypto

• Goals

– Plaintext confidentiality

– Server (and client)
authentication

– Stream integrity

• Given a TLS connection with

– Honest parties

– Strong crypto algorithms

– Recent protocol versions
and extensions

Challenges
• Cryptographic agility

– Ciphersuites, protocol versions

– Some are weaker than others

– Prove security for the negotiated parameters

• Complex state machines
– Multiple epochs: initial handshake; resumption; renegotiation

– Fragmentation

– Specify and prove security invariants

TCP
First

Handshake
Data Rehandshake Data Alert

Epoch 0 Epoch 1 Epoch 2

DHGroup

DH

CRE

PRF

RSA

Cert

Sig

SessionDB

StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment

Alert
Datastream

Handshake (and CCS)

TLSInfoTLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlainApplication

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions

1

2

3 4

5

6
7

Range

8

9Error

Modular Architecture for miTLS

DHGroup.html
DH.html
CRE.html
PRF.html
RSA.html
Cert.html
Sig.html
SessionDB.html
StatefulLHAE.html
LHAE.html
Enc.html
MAC.html
Record.html
Dispatch.html
TCP.html
Encode.html
LHAEPlain.html
StatefulPlain.html
TLSFragment.html
Alert.html
DataStream.html
Handshake.html
TLSInfo.html
TLSConstants.html
AppData.html
Bytes.html
UTLS.html
RPC.html
Nonce.html
TLS.html
CoreCrypto.html
RSAKey.html
Game.php/?game=1
Game.php/?game=1
Game.php/?game=3
Game.php/?game=3
Game.php/?game=4
Game.php/?game=4
Game.php/?game=5
Game.php/?game=5
Game.php/?game=6
Game.php/?game=6
Game.php/?game=7
Game.php/?game=7
Extensions.html
Game.php/game=2
Game.php/game=2
Range.html
Game.php/?game=7
Game.php/?game=7
Game.php/?game=7
Game.php/?game=7
Error.html

our main
TLS API
(outline)

type cn // for each local instance of the protocol

// creating new client and server instances

val connect: TcpStream -> params -> (;Client) nullCn Result

val accept: TcpStream -> params -> (;Server) nullCn Result

// triggering new handshakes, and closing connections

val rehandshake: c:cn{Role(c)=Client} -> cn Result

val request: c:cn{Role(c)=Server} -> cn Result

val shutdown: c:cn -> TcpStream Result

// writing data

type (;c:cn,d:(;c,OutStream(c)) data) ioresult_o =

| WriteComplete of c':cn

| WritePartial of c':cn * rest:(;c’,OutStream(c’)) data

| MustRead of c':cn

val write: c:cn -> d:(;c,OutStream(c)) data -> (;c,d) ioresult_o

// reading data

type (;c:cn) ioresult_i =

| Read of c':cn * d:(;c,InStream(c)) data

| CertQuery of c':cn

| Handshake of c':cn

| Close of TcpStream

| Warning of c':cn * a:alertDescription

| Fatal of a:alertDescription

val read : c:cn -> (;c) ioresult_i

Each application creates
and runs session &
connections in parallel

• Parameters select
ciphersuites and
certificates

• Results provide
detailed information
on the protocol state

Interoperability & Performance

reference code vs
production code

Sufficient for simple applications.

We miss system engineering:
custom memory manager,
crypto hardware acceleration,
low-level countermeasures…

305 292 41920 57 45

miTLS OpenSSL JSSE

Handshake (Sessions/S) RSA

0

100

200

300
Transport

Layer (MB/S)

RC4-MD5

RC4-SHA

3DES-SHA

We account for some side-channels, not for timing

1. verification tools: F7, Z3, EasyCrypt
now: mechanized theory using Coq/SSReflect

next: certified F* tools and SMT solver

2. cryptographic assumptions
now: concrete reductions using Easycrypt

next: mechanized proofs using relational probabilistic logic

3. the F# compiler and runtime: Windows and .NET
next: minimal TCB running e.g. on isolated core (SGX)

4. core cryptographic providers
next: correctness for selected algorithms (elliptic curves)

miTLS: A Verified Reference
Implementation for TLS

Milestone in verified software: cf Leroy’s CompCert (2009) or Klein et al’s L4.verified (2010)

Triple handshake attack

F* - Latest in an Evolution of Languages

• Symbolic and computational models for cryptography (F7)

• A type-preserving compiler to .NET bytecode (Fine)

• Security of an implementation of the TLS 1.2 standard (F7)

• Self-certification: Certifying F* using F* and Coq

• A fully abstract compiler from F* to JavaScript

• TS*: An embedded, secure subset of TypeScript

• RF*: Probabilistic relational logic for verified cryptography

• F* v1.0:
Open source, programmed entirely in F*, bootstrapped in OCaml and F#.
More streamlined, expressive, and efficient than prior versions.

Summary of Lecture 3

• We consider applications of F7, its successor F*, and
adaptations of this work to programs in C

• Plenty of scope to adapt these techniques to other
applications of cryptographic programming!

