Friday 4t 09:00-09:50

Cryptographic and
Probabilistic Programming

Rock of Bertinoro

e

Andrew D. Gordon

Microsoft Research and
University of Edinburgh

@AndrewDGordon #fosad2015

Agenda and Goals

Lecture 1: Problem of Verifying Cryptographic Protocols
Lecture 2: A Formal Calculus of Refinement Types
Lecture 3: Verified Cryptographic Programs for Protocols
Lecture 4: Probabilistic Programming and Security

My goal in lectures 1-3 is to motivate, explain the basic
principles, and give examples, of a line of work on verifying
the actual implementation code of cryptographic protocols.

My goal in the final lecture is to introduce the field of
probabilistic programming and discuss various security-
related applications.

Credits #fosad2015

Mihhail Aizatulin, Andrew D. Gordon, Jan Jlrjens: Extracting and verifying cryptographic models
from C protocol code by symbolic execution. ACM Conference on Computer and Communications
Security 2011:331-340

Mihhail Aizatulin, Andrew D. Gordon, Jan Jirjens: Computational verification of C protocol
implementations by symbolic execution. ACM Conference on Computer and Communications
Security 2012:712-723

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, Sergio Maffeis:
Refinement types for secure implementations. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(2):8
(2011)

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub:
Implementing TLS with Verified Cryptographic Security. IEEE Symposium on Security and Privacy
2013:445-459

Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon: Modular verification of security
protocol code by typing. POPL 2010:445-456

Cédric Fournet, Karthikeyan Bhargavan, Andrew D. Gordon: Cryptographic Verification by Typing for
a Sample Protocol Implementation. FOSAD 2011:66-100

Francois Dupressoir, Andrew D. Gordon, Jan Jirjens, David A. Naumann: Guiding a general-purpose
C verifier to prove cryptographic protocols. Journal of Computer Security (JCS) 22(5):823-866 (2014)

Andrew D. Gordon, Cédric Fournet: Principles and Applications of Refinement Types. Logics and
Languages for Reliability and Security 2010:73-104

Andrew D. Gordon, Thore Graepel, Nicolas Rolland and, Claudio V. Russo, Johannes Borgstrom, John
Guiver: Tabular: a schema-driven probabilistic programming language. POPL 2014:321-334

Problem of Verifying
Cryptographic Protocols

Cryptographic and Probabilistic
Programming, Part 1

Cryptographic Protocols

* Principals communicate over an untrusted network

— QOur focus is on Internet protocols, but same principles apply to
banking, payment, and telephony protocols

* A range of security and privacy objectives is possible
— Message confidentiality — against release of contents
— ldentity protection — against release of principal identities
— Message authentication — against impersonated access
— Message integrity — against tampering
— Message correlation — that a response matches a request
— Message freshness — against replays of old messages

* To achieve these goals, principals rely on applying
cryptographic algorithms to parts of messages, but also on
including message identifiers, nonces (unpredictable
guantities), and timestamps

Cryptographic protocols go wrong

e Historically, one keeps finding simple attacks against
protocols

— even carefully-written, widely-deployed protocols,
even a long time after their design & deployment

— simple = no need to break cryptographic primitives

 Why is it so difficult?
— breaking functional abstractions

— concurrency + distribution + cryptography
 Little control on the runtime environment

— active attackers
* hard to test

— implicit assumptions and goals
* Authenticity, secrecy

The Needham-Schroeder problem

In Using encryption for authentication in large networks of computers
(CACM 1978), Needham and Schroeder didn’t just initiate a field that
led to widely deployed protocols like Kerberos, SSL, SSH, IPSec, etc.

They threw down a gauntlet.

“Protocols such as those developed
here are prone to extremely subtle
errors that are unlikely to be
detected in normal operation.

The need for techniques to verify
the correctness of such protocols is
great, and we encourage those
interested in such problems to
consider this area.”

The Needham-Schroeder public-key authentication protocol (CACM 1978)

<« {IBKB Ihst |

—| {| msg3(ANA) [} [
< {I msg6(NANB) [} F
< {Imsg7(NB) [}s >

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A, KA |}-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

The Needham-Schroeder public-key authentication protocol (CACM 1978)

AB |——p

4—| {| B,KB | }s-1
—| {| msg3(A,NA) | }s |">

(| AKA [t —

«| (| msg6(NANB) [},

= {| msg7(NB) |}, >

Principal A initiates a session with principal B
S is a trusted server returning public-key certificates eg {| A,KA | },s-1
NA,NB serve as nonces to prove freshness of messages 6 and 7

Assuming A knows KB and B knows KA, we get the core protocol:

I msg3ANA) 1}e >

«| (I msg6(NANB) [},

= {I msg7(NB) |}y >

More precisely, the goals of the protocol are:
e After receiving message 6, A believes NA,NB shared just with B
e After receiving message 7, B believes NA,NB shared just with A

If these goals are met, A and B can subsequently rely on keys
derived from NA,NB to efficiently secure subsequent messages

A certified user M can play a man-in-the-middle attack (Lowe 1995)

o e

-| {] msg3(A,NA) |}y |" _| {| msg3(A,NA) |} |"

« {| msg6(NANB) [}, |

«| (| msg6(NANB) [},

= {| msg7(NB) |}, >

= {| msg7(NB) | }s >

This run shows a certified user M can violate the protocol goals:
e After receiving message 6, A believes NA,NB shared just with M
e After receiving message 7, B believes NA,NB shared just with A

(Writing in the 70s, Needham and Schroeder assumed
certified users would not misbehave; we know now they do.)

A brief history: 1978 —

We assume that an intruder can interpose
a computer on all communication paths,

-’ and thus can alter or copy parts of
messages, replay messages, or emit false
b | material. While this may seem an
/ Hateyou,

\FliBob,

extreme view, it is the only safe one when
. A
love Alice

A designing authentication protocols.
Bob! -Alice gning P
Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”

1981: Denning and Sacco find attack on N&S symmetric key protocol

1983: Dolev and Yao first formalize secrecy properties of NS threat model using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; incomplete, but useful

1994: Hickman, Elgamal invent SSL; holes in v1, v2, but v3 fixes these, very widely deployed
1994: Ylonen invents SSH; holes in v1, but v2 good, very widely deployed

1995: Abadi, Anderson, Needham, et al propose various informal “robustness principles”
1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs
circa 2000: Several FMs for “D&Y problem”: tradeoff between accuracy and approximation
circa 2007: Many FMs developed; several deliver both accuracy and automation

2014: dozens of attacks against mainstream TLS implementations

Specs, code, and formal tools

Symbolic Models
Casper Athena Hand Proofs
Cryptyc NRLS 'f Protocol Standards CryptoVerif (‘06)
ecurify)
AVISPA Scyther EasyCrypt (‘11)
_ F7('11) RF*('13)

Computational
Models

Kerberos

ProVerif ("01) LS

F7 ('08) F* (‘11) WS-Security

IPsec
SSH

a . N\

SMT Solvers ML, F# Ruby
Theorem Model Java
Provers /

N Checker& C C++ CH

General Verification Protocol Implementations and Applications

Models: Formal vs Computational
Cryptography

* Two approaches for verifying protocols and programs

Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70’s)
— Structural view of protocols, using formal languages and methods
— Many automated verification tools, scales to large systems

Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80’s)
— Concrete, algorithmic view, using probabilistic polynomial-time machines
— New formal tools: CryptoVerif, Certicrypt, EasyCrypt

* Can we get the best of both worlds? Much ongoing work on
computational soundness for symbolic cryptography
(Abadi Rogaway, Backes Pfitzman Wagner, Warinschi,... mid 00’s)
— It works... with many mismatches, restrictions, and technicalities
— At best, one still needs to verify protocols symbolically

* Can we directly verify real-world protocols ?

Models vs implementations

* Protocol specifications remain largely informal

— They focus on message formats and interoperability,
not on local enforcement of security properties

 Models are short, abstract, hand-written
— They ignore large functional parts of implementations
— Their formulation is driven by verification techniques

— It is easy to write models that are safe but dysfunctional
(testing & debugging is difficult)

e Specs, models, and implementations drift apart...
— Even informal synchronization involves painful code reviews
— How to keep track of implementation changes?

From code to model

Our approach: we directly verify
reference implementations
treated as “giant” protocol models

Executable code is more detailed than models
— Some functional aspects can be ignored for security
— Model extraction can safely erase those aspects
Executable code has better tool support

— Types, compilers, debuggers, libraries, verification
tools

Agenda for Rest of Lecture 1

* How to represent protocols and their correctness within
a concurrent functional language (F#/0Caml):
— Correspondence assertions as assume/assert
— Message-passing concurrency as in the pi-calculus
— Crypto modelled using Morris’ seal abstraction
— Protocol roles as functions (we’ll see the code in action)
— Opponent (attacker) is an arbitrary untyped expression
— Correctness as robust program safety

* Overall, we reduce crypto protocol verification to a program
verification problem

Example: Authenticated Message

assume Request(text)

—

Client (C)

text

HMAC(key,text)

[——]

o o o a

[——]

> S

o o o a

assert Request(text)

I I |
Service (S)

e Security goal is simply authenticity, but not
confidentiality or freshness

* Shows essence of problem, with simplifying assumptions

— Assume one key, shared between two, fixed principals

— Assume principals use keys only in compliance with protocol

Assume and Assert

Suppose there is a global set of formulas, the log
To evaluate assume C, add C to the log, and return ().

To evaluate assert C, return ().

— If Clogically follows from the logged formulas, we say the assertion
succeeds; otherwise, we say the assertion fails.

— The log is only for specification purposes; it does not affect execution

assume Foo(); assert Bar(); assume Foo()=>Bar(); assert Bar()

Our use of first-order logic predicates (like Foo()) generalizes
conventional assertions (like assert i>0 in Hoare logic)

— Such predicates usefully represent security-related concepts like roles,
permissions, events, compromises

Symmetric Crypto

type apickled (xbyte array representation of ax*)
val pickle : (aa — apickled)
val unpickle : (o pickled — «)

type achkey (x*hash keyx)

type hmac (xkeyed hashx)

val mkHKey : (unit — ahkey)

val hmacshai : (a hkey — (a pickled — hmac))

val hmacshaiVerify : (o hkey — (B pickled — (hmac — apickled)))

type asymkey (xsymmetric encryption keyx)
type enc (xciphertextx)

val mkEncKey : (unit — a symkey)

val aesEncrypt : (¢ symkey — (o pickled — enc))

val aesDecrypt : (o symkey — (enc — apickled))

Morris’ Seal Abstraction

A seal k for a type T is a pair of functions:
e the seal function for k, of type T — Un
e the unseal function for k, of type Un — T

The type Un consists of untrusted, public bitstrings known to the attacker.

The seal function, applied to M, wraps up its argument as a sealed value, written {M }.
There is no other way to construct {M },.

The unseal function, applied to {M };, unwraps its argument and returns M.
There is no other way to retrieve M from {M },.

Sealed values are opaque; in particular, the seal k cannot be retrieved from {M },.

To implement a seal k, we maintain a list of pairs [(M},ay);...;(M,,ay)].
The list records all the values M; that have so far been sealed with k.
Each g; is a fresh name representing the sealed value {M; } .

J.H. Morris, Jr, Protection in Programming Languages, CACM 1973

Coding Crypto Library with Seals

type ahkey = HK of (a pickled) Seal
type hmac = HMAC of Un

let mkHKey ():a¢ hkey = HK (mkSeal "hkey")
let hmacshal (HK key) text = HMAC (fst key text)
let hmacsha1Verify (HK key) text (HMAC h) =
let x:o pickled = snd key h in
if x = text then x else failwith "hmac verify failed"

Exercise: Implement shared key encryption, public-key encryption, and
digital signatures using seals.

type asymkey = Sym of apickled Seal
type enc = AES of Un

Limits of Symbolic Models

* Dolev-Yao style symbolic models (including seals) have
effective proof techniques, but make strong assumptions:

Message length is only partially observable
No collisions: {M},={M’},. implies M=M" and K=K’
Non-malleability: from {M}, cannot construct {M’},

No partial information: that attacker cannot guess half the bits of a
message, or know half in advance

Keys are unguessable, even passwords

* Cryptographers rely on probabilistic computational models,
making fewer assumptions, but with fewer automated
reasoning techniques

e Justifying symbolic models via computational models (where
possible), or simply developing automation for the latter, is a
growing research area

Example: Authenticated Message

assume Request(text)

[——]

o o o a

% text HMAC(key,teXt) M D=-D —
[

—

assert Request(text)
I I |

Service (S)

let addr : (string * hmac, unit) addr = http "http://localhost:7000/pwdmac" "“
let k = mkHKey()

Client (C)

let client text = let server =
assume (Request(text)); let c = listen addr in
let ¢ = connect addr in let text,h = unpickle min
let mac = hmacshal k (pickle s)= = 70

send c (pickle (s,mac)) > Connecting to localhost:7000
» Sending {BgAylCsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
let _ = fork (fun _->client k "Hel - Listening at ::1:7000

let _ = server k > Received Request Hello

We assume that an intruder can interpose a computer on all communication paths, and thus can alter
or copy parts of messages, replay messages, or emit false material. While this may seem an extreme
view, it is the only safe one when designing authentication protocols. Needham and Schroeder CACM (1978)

The problem: can any attacker break any assertion, given:

val addr : (content, content) Net.addr
val client : (string -> string)

val server : (unit -> unit) ~ NV
=G\ A\ U Y/

CRYIPLE, WA

S\ D)}

U U

.
SN\ WU

Formal Threat Model: Opponents and Robust Safety

A closed expression O 1s an opponent iff O contains no occurrence of assert.
A closed expression A is robustly safe iff application O A is safe for all opponents O.
| |

Hence, our problem is whether the expression (addr, client,server,...) robustly safe.

One Source, Two Tasks

Symbolic
Model

Security
Goals

Verifier

Symbolic
verification

My

protocol __ -

Symbolic
Crypto

My code

Authz

Other

Application

J N\

Libraries

Concrete
Crypto

N/

Platform (CLR)

Symbolic testing ‘
& debugging

Crypto
Net

Interoperability

Source code
(modules)

Some other
implementation

Summary of Lecture 1

The problem of protocol vulnerabilities remains acute
Verifying the actual protocol code may help

We have recast prior work on modelling protocols within process
calculi (spi, applied pi) in the setting of ML with concurrency

Security properties (authenticity, but secrecy too) are expressed
using program assertions

In Lecture 2, we develop RCF — a formal foundation for ML with
concurrency — and its system of refinement types

RCF is the basis for F7, a scalable verifier for protocol code

fosad2015

Friday 4t 10:10-11:00

A Formal Calculus for
Refinement Types

Cryptographic and Probabilistic
Programming, Part 2

F7: Refinement Types for F

* We use extended interfaces (.fs7) client fs7 -
— We typecheck implementations crypto.ts

— Interfaces include types refined
with first-order formulas

client.fs

— Only libraries security-specific

* F7 supports a large subset of F#

* F7 relies on external SMT solver to
discharge proof obligations

n:int{n > 0}

1s the type of positive integers
k : bytes{ KeyAB(k,a,b)}

1s the type of byte arrays used as keys by a and b
x : str{Request(a,b,x)}

1s the type of strings sent as requests from a to b

file fsi

Compile

(F#)

RCF: Refined Concurrent FPC

e supports functional programming a la ML and Haskell,
* has concurrency in the style of process calculus,

* and refinement types, allowing correctness properties to be
stated in the style of dependent type theory.

 RCFis the theoretical basis for F7, but there is also a direct
implementation (done at Saarbruecken)

My goalis to explain from first principles how we can show
the following RCF example is safe by typechecking:

al42r (ve)((let x = a? in assume Sent(x) I clx) I’ (let x = ¢? in assert Sent(x)))

RCF PART 1:
SYNTAX AND SEMANTICS

The Fixpoint Calculus (FPC):

Xy Y5 <
h:=
inl
inr
fold
M,N ::=
X

()

funx — A
(M,N)
h M
A,B .=
M
M N
M=N
letx=AinB
let (x,y) =M in A
match M with 7 x — A else B

variable
value constructor
left constructor of sum type
right constructor of sum type
constructor of 1so-recursive type
value
variable
unit
function (scope of x is A)
pair
construction
expression
value
application
syntactic equality
let (scope of x 1s B)
pair split (scope of x, y1s A)

constructor match (scope of x 1s A)

The Reduction Relation: A — A’

(funx — A) N — A{N/x}
(let (x1,x2) = (N1,N>)in A) —>A{N1/)C1}{N2/X2}

if M =h N for some N

(match M with & x — A else B) — A{N/x} .
B otherwise

B nl() ifM=N
M_NH{ inr() otherwise

letx =MinA — A{M/x}

A—A' =letx=AinB—letx=A"inB
L

Example: Booleans and Conditional Branching:

A

false = inl ()
A
true = inr ()
if A then B else B' =
let x = A in match x with inr(_) — B else match x with inl(_) — B’

Exercise:
Exercise:
Exercise:

Exercise:
Exercise:

Derive arithmetic, that 1s, value zero, functions succ, pred, and iszero.
What is the reduction of: if true then B else B’
Derive list processing, that is, value nil, functions cons, hd, tl, and null.

Write down an expression £ that diverges, thatis, Q — A} — A, — ...
Derive a fixpoint function fix so that we can define recursive function defi-

nitions as follows: let rec fx =A 2 Jet f=fix (fun f — funx — A).

The Heating Relation A = A':
Axioms A = A’ areread as bothA = A’ and A’ = A.

A=A
A=A" ifA=A andA' = A"

A=A =letx=AinB=letx=A"inB

A—A" IfA=BB—-B B =A
|

Heating 1s an auxiliary relation; its purpose 1s to enable reductions, and to place every
expression in a normal form, known as a structure.
(Process calculi often use a symmetric version, called structural equivalence.)

Parallel Composition:

A,B::= expression
e as before
AlB fork

OrA=A

(AT AP A" =AT (AT A")

(AP AP A" = (AP A) P A"

letx = (AT A')inB=AT (let x = A’ in B)

A=A"= (ArB)= (A'T B)
A=A = (BPA)= (BT A)
A—A" = (AT B) — (A'T B)
B—B = (ArB)— (AT B

Exercise: Which parameter 1s passed to the function F' by the following expression:

letx = (17 (27 3))in Fx

Input and Output:

A,B = expression
as before
alM transmission of M on channel a
a? receive message off channel
alM = aMT ()

alMT a?— M
|

Exercise: What are the reductions of the expression: a!3 1 a? 1 a!5
Exercise: What are the reductions of the expression: a!3 7 let x = a?in F x
Exercise: What are the reductions of the expression: a!true I a!false

Name Generation:

A,B::= expression
. as before
va)A fork
(va)

A=A = (va)A = (va)A'

agtfm(A)=A"T ((va)A) = (va)(A'T A)
a¢m(A)= ((va)A)T A= (va)(AT A")
aé¢fm(B)=letx = (va)Ain B= (va)letx = Ain B

A— A" = (va)A — (va)A’

Exercise: What are the reductions of the following expression:
letx = (va)ar (vb)bin F x

Origins of this Calculus

 RCF is an assembly of standard parts, generalizing some ad hoc
constructions in language-based security
— FPC (Plotkin 1985, Gunter 1992) — core of ML and Haskell

— Concurrency in style of the pi-calculus (Milner, Parrow, Walker 1989) but
for a lambda-calculus (like 80s languages PFL, Poly/ML, CML)

— Formal crypto is derivable by coding up seals (Morris 1973, Sumii and
Pierce 2002), not primitive as in eg spi calculus(Abadi and Gordon, 1997)

— Security specs via assume/assert (Floyd, Hoare, Dijkstra 1970s),
generalizing eg correspondences (Woo and Lam 1992)

— To check assertions statically, rely on dependent functions and pairs with
subtyping (Cardelli 1988) and refinement types (Pfenning 1992, ...) aka
predicate subtyping (as in PVS, and more recently Russell)

— Public/tainted kinds to track data that may flow to or from the opponent,
as in Cryptyc (Gordon, Jeffrey 2002)

Example: Concurrent ML:

(T)chan = (T — unit) * (unit— T)

chan = fun _ — (va)(funx — a!x,fun_ — a?)

A .
SendA:funcx—ﬂet (s,7) = cinsx send x on ¢
recv = func —let (s,7) = cinr () block for x on ¢
fork =funf — (f() T ()) run f in parallel
l

Example: Mutable State:

(T)ref = (T)chan

ref M = IAet r = chan() in send r M;r new reference to M
deref M = let x = recv M insend M x;x dereference M

M :=N =1letx = recvMinsend M N update M with N

l

Exercise: What are the reductions of the expression: let x = ref 5 in x :=7
Exercise: Encode IMP programs within RCFE.

Consider a global set of formulas, the log, drawn from some logic.

A General Class of Logics:

C:=pMy,....M,) | M=M"]| ...
{Ci,....,C,} EC deducibility relation
|

To evaluate assume C, add C to the log, and return ().
To evaluate assert C, return (). If C logically follows from the logged formulas, we say
the assertion succeeds; otherwise, we say the assertion fails.

Assume and Assert:

assume C = assume C [()

assert C — ()
| |

Exercise: What are the reductions of our running example:

ald2 1 (ve)((let x = a? in assume Sent(x) " c!x) " (let x = ¢? in assert Sent(x)))

Structures and Static Safety:

e :=M|MN|M=N |let (x,y) = MinB |
mat(}_\hM with 7 x — A else B | M? | assert C

Hz’El..nAi — () TALT LT Ay

Z ={}|(letx = ZinB)

S ::=(vay)...(vay) (([] assume CG) 7 (J] ;™) 7 (] fk{ek}))

icl..m jel.n kel..o

Let structure S be statically safe if and only if,
forall k € 1..0 and C, if ¢; = assert C then {C,...,C, } - C.
|

Lemma For every expression A, there is a structure S such that A = S.

Expression Safety:

Let expression A be safe if and only if,
forall A’ and S, if A —* A" and A’ = S, then S is statically safe.
|

RCF PART 2:
TYPES FOR SAFETY

Starting Point: The Type System for FPC:
IEFO (x:T)eE EFA:T Ex:THFB:U
Er-x:T ErFletx=AinB:U

EFo EFM:T EFN:U
EF():unit EFM=N :unit+ unit

Ex:THA:U EFM:(T—U) EFN:T
Etfunx —A: (T - U) EFMN:U

E-M:T EFN:U EFM:(TxU) Ex:T,y:UFA:V
Er(M,N): (T xU) Etlet (x,y)=MinA:V

h:(T)U) E-M:T EFU EFM:T h:(H,T) Ex:HFA:U EFB:U
EFhM:U ErHmatchM withhx — Aelse B: U

in:(T,T+U) inr:(U, T4+U) fold:(T{puo.T/o},uo.T)

Exercise: Write types of Booleans, numbers, and lists.
Exercise: Write a well-typed fixpoint combinator.

Three Steps Toward Safety by Typing

We include refinement types {x : T | C}, whose values are
those of T that satisfy C

To exploit refinements, we add a judgment E |- C, meaning
that C follows from the refinement types in E

To manage refinement formulas, we need (1) dependent
versions of the function and pair types, and (2) subtyping

e A valueof Ilx: 7. U is a function M such that if N
has type 7, then M N has type U{N /x}.

e A value of Xx: T. U is a pair (M,N) such that M
has type T and N has type U{M /x}.

o [fA:Tand T <:U thenA : U.

IS_yntax of RCF Types:

H,T,U,V ::= type

unit unit type

[Ix:T.U dependent function type (scope of x 1s U)
Xx:T.U dependent pair type (scope of x1s U)
T+U disjoint sum type

ua.T 1so-recursive type (scope of @ is T)

o 1so-recursive type variable

{x:T|C} refinement type (scope of x is C)

{C} % {_:unit| C} ok-type
bool = unit+ unit Boolean type

Starting Point: The Type System for FPC:
IEF<> (x:T)eE EFA:T Ex:THFB:U
EFx:T ErFletx=AinB:U

EFo EFEM:T ERN:U
E-():unit EFM=N :unit+ unit

Ex:THA:U E-FM:(T—-U) EFN:T
Er-funx —A: (T —U) EFMN:U

E-EM:T EEN:U EEM:(TxU) Ex:T,y:UFA:V
EF(M,N): (T xU) Etrlet (x,y)=MinA:V

h:(T,U) E-M:T EFU EFM:T h:(HT) Ex:HFA:U ERB:U
E-hM:U E+FmatchM withhx — Aelse B:U

in(T,T+U) inr:(U, T+U) fold:(T{uo.T/a},puo.T)

Exercise: Write types of Booleans, numbers, and lists.
Exercise: Write a well-typed fixpoint combinator.

Rules for Formula Derivation:

I1‘orms(E) =
{C{y/x}}Uforms(y:T) ifE=(y:{x:T|C})
forms(Ey) Uforms(E;) if E = (E,Ey)
%) otherwise

Eto fufu(C) Cdom(E) forms(E)FC
EFC

Exercise: What is forms(E) if E = xy : {y1A: int | Even(yy)},x2 : {y2 :int| Odd(x;)}?
Exercise: A handy abbreviation is {C} = {_: unit | C}, where _ is fresh. What is
forms(x: {C})?

We write E = C to mean that C follows from the refinement formulas in C.
For example, x : {x:int|x >0},b: {b:bool | x <2} Fx=1.
(In F7, did we try to implement this directly?)
Rules for Assume and Assert:
|
Er-o fnfv(C) Cdom(E) EFC
Etassume C:{_:unit|C} E+ assertC : unit
|

Subtyping Rules for Refinement Types:

EF{x:T|C} EFT<T EFT<T Ex:T-HC EFM:T EFC{M/x}
EF{x:T|C}<:T' EFT < A{x:T"|C} EF-M:{x:T|C}

Exercise: How would we derive - {x :int | x > 0} <:int.
Exercise: Derive the following subtyping rules:

EFT<:T' Ex:{x:T|C}-C ErC=C
EF{x:T|C}<:A{x:T"|C"} EF{C} < {C}

Standard Rules of (Dependent) Subtyping:

EFA: T EFT<:T
EFA:T

EFo EFT <:T Ex:T'FU<U
Etunit<:unit EF(Ix:T.U)<:(Ilx:T".U")

EFT<T' Ex:TFU<U ERT<T ERU<U
EFEx:T.U)<: (Xx:T'.U") EH(THU)<(T'+U")

Eto (a<:d)eE Ea<ad+-T<T ad¢mp(T) o ¢fmf(T)
Eroa<: o Et(uo.T)<: (ua'.T)

Exercise: Understand why:

F{x:int| x>0} <:int

- (ILx : int. bool) <: (Ilx: {x:int|x > 0}. bool)

but not:

- (TLx : {x:int|x > 0}. bool) <: (ILx : int. bool)

Exercise: Prove that E - T <: T’ is decidable, assuming an oracle for E - C.
Exercise: (Hard.) Prove that E - T <: T’ is transitive.

Rules for Restriction, 1/0, and Parallel Composition:

|
Ea|[THFA:U a¢mU) EFM:T (a]T)eE EFo¢ (a]T)€E
EF(va)A:U E - alM : unit EtFa?:T

o (va)A = (Ja.A)
Eﬂ-:{&}I_AIZTl AT Ay = (A1 NAy)
E,_:{A1} AT letx=A;inA, = A,
EF(AITA): T, assume C =C

A = True 1f A matches no other rule

Exercise: Find types to typecheck the following code:

ald2r (ve)((let x = a? in assume Sent(x) " clx) I’ (let x = ¢? in assert Sent(x)))

Type System and Theorem

E:=x:11,...,x,: T, environment

EFo E 1s syntactically well-formed

EET in E, type T is syntactically well-formed
E-C formula C 1s derivable from E

EFT < U in E, type T 1s a subtype of type U
EFA:T in E, expression A has type T

Lemma If @ =S : T then S is statically safe.
LemmalfEFA:TandA=A"thenEHA":T.
LemmalfEFA:TandA — A" thenEFA': T.

Theorem If &~ A : T then A is safe.
(For any A" and S such that A —* A’ and A’ = S
we need that S 1s statically safe.)

RCF Ill: TYPES FOR ROBUST SAFETY

Safety Versus an Untyped Adversary

Closed expression A 1s robustly safe 1ff the application O A 1s safe, for all opponents O.
Well-typed expressions are safe, but not in general robustly safe.

Consider funx : pos — (assert x > 0) where pos -~ {x:int| x> 0}.

Type T 1s public iff all refinements occur positively.

® DPOS
® int — pos
® POsS — int
e (pos — int) — int
We extend the type system with a type Un and public/tainted rules to get:

Lemma 1 (Opponent Typability) If O is any opponent then @+ O : Un.

Theorem 1 (Robust Safety) If O A : T and T is public then A is robustly safe.

19490
Sorts for the pi-calculus
(Milrer)

Typing and Subtypi

{Pierce, Sangiorgi)

2001
Types and effects

for authentication
(Gordon and Jeffrey)

2005
Types with logical effects
for authorization
(Fournet, Gordon, Maffeis)
L

1996
ng for Mobile Processes

19735

|

1977 1985
PCF FRC 1992
{Plotkin) {Plotkin; Gunter) Refinement types

(Freeman and Pfenning)

2008
1999 2008
Refinement types for ML Hybrid typechecking
{x:T | e} {Flanagan 2008)
(Pfenning and Xi}
-

1988 1996
Dependent types and subtyping Predicate subtyping
{Cardelli) T | C}
(Rushby)

TYPE THEORIES BEHIN

D RCF

Summary of Lecture 2

RCF is an assembly of standard parts, generalizing some ad
hoc constructions in language-based security

It underpins F7, a scalable verifier for security code

In the next lecture, we consider applications of F7, its
successor F*, and adaptations of this work to programs in C

http://research.microsoft.com/F7

fosad2015

http://research.microsoft.com/F7

Friday 4th 17:00-18:00

Verified Cryptographic
Programs for Protocols

Cryptographic and Probabilistic
Programming, Part 3

From a Statement for Panel on “CSF: The Next Twenty Years” at CSF20, Venice, 2007

The Rise of Code Verification

* Re security protocols and the Needham-Schroeder problem:
— The first 20 years of CSF has seen the Rise of Model Verification
— The next 20 years of CSF will see the Rise of Code Verification

* If we can verify code in the languages implementors actually
use, we can find and fix security properties as soon as protocols
are first implemented

 We may well do better to teach existing software verification
tools about the attacker, than to build from scratch

* Into the bargain, we'll detect other security bugs, eg, overruns,
using the same tools

o0 server.c - Microsoft Visual Studio & E‘EI&J

Test

File Edit View Project Debug Team Data Tools Architecture Analyze Window Help

clientc X

(Unknown Scope) -| -

(Unknown Scope) -
//Begin ClientCode + —int main(int argc, char ** argv) +
int main(int argc, char ** argv) » { .
= _(requires \program_entry_point()) RPCstate seState;
{
RPCstate clState; if (parseargs(argc,argv,&seState))
{
clState.end = CLIENT; fprintf(stdout, "Usage: server serverAddress [port]\n");
exit(-1);
if (parseargs(argc,argv,&clState) < 9) }
{
fprintf(stdout, "Usage: client clientAddress serverAddress [port] request\n" —#ifdef VERBOSE
exit(-1); printf("Server: Now listening on %s, port %d.\n", seState.self, seState.por
} #endif
if (socket_listen(&(seState.bio),&(seState.bio), (char*) seState.self,seStat
~#ifdef VERBOSE return -1;
printf("Client: Now connecting to %s, port %d.\n", clState.other, clState.port —#ifdef VERBOSE
fflush(stdout); printf("Server: Accepted client connection.\n");
#endif #endif
// Getting arguments =
if (socket_connect(&(clState.bio), (char*) clState.other,clState.port)) = /* Receive request */ Bl
return -1; if (recv_request(&seState) < @) return -1; E
clState.k_ab = get_shared_key(clState.self, clState.other, &(clState.k_ab_len)
clstate.k = mk_session_key(&(clState.k_len)); /* Send response */
clState.response = MULL; seState.response = get_response(&(seState.response_len));
_(ghost {
(&clsState)->\owns += (int[1]) clState.bio; v —#ifdef CSEC_VERIFY v
100% = < n] > 100% ~ «| m 4

An Example Protocol

Client: Nlnw rannertino tn lnrcalhnet nnrt 4422 Cerver: Nlnw lictenino nn lnralhnet nnrt 4422

Authenticated RPC: RPC-enc

I

A — B: A, {request, kﬁ"eq}km
B — A: {response},

R EEE———————————————

Client: Received encrypted message: Server: Sending encrypted message:
6a64b21d6d93a65aead74fa820d7049fd661bd2a 6a64b21d6d93a65aead74fa820d7049fd661bd2a
9495deaef59c528b51e4042cb10a47d507e42clc 9495deaef59c528b51e4042cb10a47d507e42clc
132a8855b5d8081c46197131 132a8855b5d8081c¢46197131

Client: Received and authenticated response:
Look out the window.

Authenticated RPC: RPC-enc

1

A — B: A, {request, ‘Z"""""I}l'w
B — A: {response};

L

let A = event client_begin(request);

new kS1;

let varl = concl(clientID, E(kAB, concl(request, kS1))) in
out(c, varl);

in(c, msgl);

in(c, var2);

event client_accept(request, D(kS1, var2)); O.

let B =

in(c, msg2);

in(c, varl2);

new responsel;

event server_reply(fst(D(kAB, snd(var12))), responsel);
let var13 = E(snd(D(kAB, snd(var12))), responsel) in
out(c, var13); 0.

process ! new kAB; (!A | !B)

SOLUTION VIA SYMBOLIC EXECUTION

j cvm.Pl.good - Notepad l == iﬁj

File Edit Format View Help

Set
Loa(
cal
* CI]|Load

Loag

Seth

C source

C Girtual m4|Ste
PP

115eTk
““Il";//ﬁ%f sto
/ Loag
Intermediate |L934
Setf

sto

* Mg |Loag
App

Seth

LoadInt 8

| iml.all.good - Notepa

SetPtrstep
LoadMem
LoadInt 120

IVIOdeI ﬁ?g'ﬁgggigt response_len Ion
=

File Edit

Format View Help

let A =

event client_begin(request);
new ksl<lenvar(i21l)>;
let msgl = 70616972 |len(request)<8>|request|ksl in

let cip
let msg
out(c,

let msg
out(c,

in(c, m
let var
in(c, m
event c

let B =
in(c, m
let var
in(c, m
if 7061
let cj

Applied pi

ms§ 3
1if msg34
let variz
new resy

* ProVer

Verification Result

l

| pvmodel.good - Note
File Edit Farmat View Help

Tet A =

event client_begin(request);

new ksl;

let varl = concl(clientiD, E(kAB, concl(request,
ks1))) 1in

out(c, varl);

in(c, msgl);

in(c, var2);

event client_accept(request, D(ksl, var2)); O.

let B =

in(c, msg2);

in(c, varl2);

new responsel;

event server_reply(parse4(D(kAaB, parse5(varl2))),
responsel) ;

let varl3 = E(parse6(D(kAB, parse7(varl2))),
responsel) 1in

out(c, varl3); O.

111

C line symbolic execution steps
int send_request(RPCstate * ctx){
1. uwint32_t ml_len, ml_e_len, full_len: stack ml_len = 14 len(ks) + 4 + len(request)
unsigned char = ml, * p, * ml_e;
ml_len = 1 + ctx—k_s_len
+ sizeof (ctx=request_len)
+ ctx—request_len;
2. p=ml = malloc(ml_len); stack p = ptr(heap6, 0)
stack m1 = ptr(heap6, 0)
3. memcpy(p, "p". 1); heapt = 'p’
4. p += 1; stack p = ptr(heap6, 1)
5. = (uint32_t %) p = ctx—request_len; heap 6 = 'p'| len(request)
6. p += sizeof(ctx—=request_len); stack p = ptr(heap6, 5)
7. memcpy(p, ctx—request, ctx—request_len); heap6 = 'p'|len(request)|request
8. p += ctx—request_len; stack p = ptr(heap6, 5 + len(request))
9. memcpy(p, ctrx=k_s, ctx—=k_s_len); heap 6 = 'p'|len(request)|request|ks
10. full_len =1 + sizeof(ctx—self_len) stack full_len = 5 4 len(clientI D)
+ ctx—self_len + encrypt_len(msgl)
+ encrypt_len(ctx—k_ab, ctx—=k_ab_len ,
ml, ml_len);
11. p = mle = malloc(full_len); stack p = heap 7
stack ml_e = heapT
12. memcpy(p, "p" ., 1): heap7 = 'p'
13.p += 1; stack p = ptr(heap 7, 1)
14. % (uint32_t %) p = ctx—=self_len; heap 7 = 'p'| len(clientI D)
15. p += sizeof(ctx—=self_len); stack p = ptr(heap 7, 5)
16. memcpy (p, ctx—=self , ctx=self_len); heap 7 = 'p'|len(clientI D)|client] D
17. p 4= ctx—self_len; stack p = ptr(heap 7, 5 + len(clientI D))
18. ml_e_len heap 7 = 'p'|len(elient] D)|client] D|cipherl
= encrypt(ctx—k_ab, ctx—=k_ab_len, stack ml_e_len = len(cipherl)

ml, ml_len, p);: new fact: len(cipherl) < encrypt_len(msgl)
cipherl = E(key(clientI D, serverI D), msgl)
msgl = 'p'|len(request)|request|ks

19. full_len =1 + sizeof(ctx—=self_len) stack full_len = 5 + len(clientI D)
+ ctx—self_len + ml_e_len; + len(cipherl)
20. send(&(ctx—bio), generate IML:
&full_len , sizeof(full_len)); out(c, 5 + len(cipherl) + len(cipherl));
21. send(&(ctx—bio), mle, full_len);} generate IML:

out(e, 'p'|len(clientI D)|client] D|cipherl);

C LOC IML LOC outcome result type time

simple mac ~ 250 12 verified symbolic 4s
RPC ~ 600 35 verified symbolic 5s
NSL ~ 450 40 verified computat. 5s
CSur ~ 600 20 flaw: fig. 11 — 5s
minexplib ~ 1000 51 flaw: fig. 12 — 15s
Figure 10: Summary of analysed implementations.

read(conn_fd, temp, 128); . . unsigned char session_key[256 / 8];

// BN_hex2bn expects zero—terminated string

temp [128] = 0; // Use the 4 first bytes as a pad

BN_hex2bn(&cipher_2 |, temp); // to encrypt the reading

// decrypt and parse cipher_2 encrypted reading =

// to obtain message fields ((unsigned int) #session_key) ~ *reading;

Figure 12: A flaw in the minexplib code: only one

Figure 11: A flaw in the CSur example: input may
byte of the pad is used.

be too short.

Computational Verification

CryptoVerif Models from C Code

Simple XOR

* First security analysis of C code to
target a verifier for the probabilistic
computational model
(ie, not “perfect” symbolic crypto)

Simple MAC

RPC-enc .
B Handwritten

RPC CryptoVerif

NSL M Derived CryptoVerif

* Builds on Blanchet’s CryptoVerif Metering(3)

* Verify over 3000 LOC, more than any "
prior work on cryptographic code in C

0 100 200 300 400 500

C LOC CV LOC Time Primitives
Simple MAC ~ 250 109 4s UF-CMA MAC
Simple XOR ~ 100 68 3s XOR
NSL ~ 450 262 86s IND-CCA2 PKE
RPC ~ 600 145 13s UF-CMA MAC
RPC-enc ~ 700 234 Os IND-CPA INT-CTXT AE

Metering ~ 1000 299 33s UF-CMA sig, CR/PRF hash

Model Extraction

e Allows automatic extraction of protocol model from code

— Assumes protocol follows a single correct run,
and any deviation should terminate immediately

— Tools allows protocol designer to write mt-calculus in C

— Verification shows the model is correct,
but not the code, as it may follow other paths

* Future directions?
— Backpatch the code to terminate if it deviates from normal path
— Scale to more examples eg PolarSSL handshake

Towards Full Verification

* Proves memory safety and symbolic security of C code
— PhD work of Francois Dupressoir, paper

— Full verification based on the MSR VCC tool, but needs much
more interactive effort than symbolic execution

* Strategy: port theory of crypto from F7 to VCC
— Not preventing timing, power consumption, physical attacks

e Future challenge

— Work with Trusted Computing Group on TPM 2.0 chip — using
stylized ANSI-C as a normative ”I\/Iachine+Human-ReaanoIe
. . 1010
Specification

Main Lines of Related Work on C

Csur [Goubault-Larrecqg and Parrennes 2005] analyzes C code for secrecy
properties via a custom abstract interpretation.

Pistachio [Udrea et al 2006] verifies compliance of C code with a rule-
based specification of the communication steps of a protocol, but doesn’t
show security of the specification.

ASPIER [Chaki and Datta 2009] relies on security-specific software model-
checking techniques, obtaining good results on the main loop of OpenSSL.

Corin and Manzano [2011] extend the KLEE symbolic execution engine to
represent the outcome of cryptographic algorithms symbolically.

Cade and Blanchet [2013] compile the CryptoVerif input language to
Ocaml and obtain computational guarantees; an application is to the SSH
Transport Layer

Almeida et al [2014] show correctness of implementations of secure and
verifiable computation over encrypted data using EasyCrypt.

F7: AN IMPLEMENTATION OF RCF

http://research.microsoft.com/F7

http://research.microsoft.com/F7

What Does F7 Prove By Typing?

Verification Goal: Robust Safety

Assume:
{ Adversary } Application | A = abstraction of libraries
P = protocol + application
\ l I = protocol, library interface
For all adversaries O that use |,
Protocol all runs of program A P O are safe,
ie, every assertion succeeds
! I\

| Platform
Networking Cryptography (Certificates,

Passwords)

F7 on Example from Lecture 1

Dq littlesym.fs7 - Microsoft Visual Studio Y 3 | Quick Launch (Ctrl+Q) A = 0
FILE EDIT VIEW PROJECT DEBUG TEAM TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP ! Andy Gordon ™
e - | a - a s wl ~ +| P Attach... = hd | | P | | n =

part.fs7 littlesymfs +# X

module M
open Pi

open Crypto // $\mbox{Crypto Library}$
open Net

// $\mbox{Networking Library}$

// $\mbox{Simple F\# types for principals, events,
type prin = string

type event = Send of prin * prin * string | Leak of
type content = string

type message = (prin * prin * string * hmac) pickle

(*--- DbBegin *)

// $\mbox{Key database:}$

let hkDb : ((prin*prin)
Db.create ()

let mkContentKey (a:prin) (b:prin)
mkHKey ()

let genKey a b =
let k = mkContentKey a b in
Db.insert hkDb (a,b) (a,b,k)

let getkKey a b =
let a',b",sk
if (a',b") =

(*--- DbEnd *)

rin*prin*(content hkey))

: content hkey =

= Db.select hkDb (a,b) in
(a,b) then sk else failwith "select

(*--- LeakBegin *)
// $\mbox{Key compromise:}$
let leak a b =
assume (Leak(a)); ((),getKey a b)
(*--- LeakEnd *)

(*--- ServerBegin *)

// $\mbox{Server code:}$

let addr : (prin * prin X string 7 hmac, unit) addr
http "http://localhost:7e@@/pwdmac™ ""

let check b m =

100% -] 4

Ready

module M
open Pi
open Crypto
open Net

(*--- PrinsBegin *)
type prin = string
type event = Send of (prin * prin * string) | Leak of prin
type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }
(*--- PrinsEnd *)
type message = (prin * prin * string * hmac) pickled
private val mkContentKey:

a:prin -> b:prin -> ((;a,b)content) hkey
private val hkDb:

(prin*prin, a:prin * b:prin * k:(;a,b) content hkey) Db.t
(*--- DbBegin *)
val genKey: prin -> prin -> unit
private val getKey: a:

string -> b:string -> ((;a,b) content) hkey
(*--- DbEnd *)

(*--- LeakBegin *)
assume la,b,x. (Leak(a)) => Send(a,b,x)
val leak:
a:prin -> b:prin -> (unit{ Leak(a) }) * ((;a,b) content) hke
(*--- LeakEnd *)

(*--- ServerBegin *)
val addr : (prin * prin * string * hmac, unit) addr
private val check:

b:prin -> message -> (a:prin * (;a,b) content)
val server: string -> unit
(*--- ServerEnd *)

Ln7 Col 1 Ch1

b |db K

Implementing TLS
with Verified Cryptographic Security

Karthikeyan Bhargavan
Cédric Fournet
Markulf Kohlweiss
Alfredo Pironti
Pierre-Yves Strub

INRIA, Microsoft Research
and IMDEA

Transport Laye

The most widely deployed
cryptographic protocol?

HTTPS, 802.1x (EAP),
FTPS, VPN, mail, VolP, ...

18 years of attacks,
fixes, and extensions

1995 — Netscape’s Secure Sockets Layer
1995 —SSL2

1996 — SSL3

1999 — TLS1.0 (RFC2246, =SSL3)

2006 — TLS1.1 (RFC4346)

2008 — TLS1.2 (RFC5246)

Many implementations

e SChannel, OpenSSL, NSS
GnuTLS, JSSE, PolarSSL, .

* Several security patches

Many papers
e Well-understood, detail

r Security (1995—)

The Transpert Layer Security (TLS) Protocol
Version 1.2

Status of This Memo

This document specifies an Internet standards track protocol for the
Internst community, and regquests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet

0fficial Protocol Standards™ (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited.
Abstract

This document specifies Version 1.2 of the Transport Layer Security
(TL3) protoccl. The TLS protocol provides communications security

communicate in a way that is designed to prevent savesdropping,
tampering, or message forgery.

over the Internet. The protocol allows client/server applications to

[)
e °|i§ https://tools.ietf.org/html/ O ~ & B & ” (2 RFC 5246 - The Transport L... ‘ ‘)LT'U\ “T,ﬁ;' {:}
|

[Docs] [txt|pdf] [draft-ietf-tls-rf...] [Diffl] [Diff2] [IPR] [Errata])
Updated by: 5746, 5878, €176 PROPOSED STANDARD
Errata Exist
Network Working Group T. Dierks
Request for Comments: 5Z4¢ Independent
Obsoletes: 3268, 434¢, 43¢6 E. Rescorla
Updates: 44852 BETFM, Inc.
Category: Standards Track Bugust 2008

) TVCTyYy ycal

ed specs

e Security theorems... mostly for small simple models of TLS

What can still possibly go wrong?

Application Infrastructure
protocol configuration certificate management

Protocol Logic Cryptography

e.g. ambiguous messages TLS e.g. no fresh IV

. cause servers to attribute DESIGN * write applet to

secrets to wrong clients realize adaptive
attack (BEAST)
Implementation Errors Weak Algorithms

many critical bugs MD5, PKCS1, RC4, ...

TLS in F# & F7: miTLS

We develop-and-verify-a reference-implementation for SSL 3.0—TLS 1.2-

1. Standard compliance: we closely follow the RFCs
— concrete message formats

— support for multiple ciphersuites, sessions and connections,
re-handshakes and resumptions, alerts, message fragmentation,...

— interop with other implementations such as web browsers and servers

2. \Verified security: we structure our code to enable its
modular verification, from its main APl down to
concrete assumptions on its base cryptography (e.g. RSA)

— formal computational security theorems
for a 5000-line functionality (automation required)

3. Experimental platform: for testing corner cases,
trying out attacks, analysing new extensions and patches, ...

https://www.mitls.org

2 miTLS - Home

> 0O

& = O |8 mitsog Y| = @

Home Publications Download Browse TLS Attacks People

. miTLS

T L 's A verified reference TLS implementation

This page is served using the miTLS demo HTTPS server. (Go back to production server)
= ciphersuite: TLS RSA_ WITH_AES 128 CBC SHA,
* compression: NullCompression,
* version: TLS 1p2

miTLS News

miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire Plomparali

formats, ciphersuites, sessions and connecfions, re-handshakes and resumptions, alerts and miTLS 0.8.1 released. See the download
errors, and data fragmentation, as prescribed in the RFCs; it interoperates with mainstream web page.

browsers and servers. At the same time, our code is carefully structured to enable its modular, 20 August 2014

automated verification, from its main APl down to computational assumptions on its cryptographic MITLS 0.7.0 released. See the download
algorithms. page.

Our implementation is written in F# and specified in F7. We present security specifications for its 4 March 2014

main components, such as authenticated stream encryption for the record layer and key

. . . I . . Announcement of the triple handshake attack.
establishment for the handshake. We describe their verification using the F7 refinement

typechecker. To this end, we equip each cryptographic primitive and construction of TLS with a new 21 November 2013
typed interface that captures its security properties, and we gradually replace concrete mIiTLS 0.1.3 released. See the download
implementations with ideal functionalities. We finally typecheck the protocol state machine, and page.

thus obtain precise security theorems for TLS, as it is implemented and deployed. We also revisit

classic attacks and report a few new ones. el

TLS Security Goals, Informally

* Goals
[Application]
— Plaintext confidentiality

— Server (and client) data

authentication

— Stream integrity J

[Crypto](—)[TLS

* Given a TLS connection with
— Honest parties
— Strong crypto algorithms

— Recent protocol versions v
and extensions [TCP]

Challenges
* Cryptographic agility
— Ciphersuites, protocol versions

— Some are weaker than others
— Prove security for the negotiated parameters

* Complex state machines
— Multiple epochs: initial handshake; resumption; renegotiation
— Fragmentation
— Specify and prove security invariants

First

e Handshake

Data Rehandshake Data Alert

Epoch O Epoch 1 Epoch 2

> € > € >

Modular Architecture for miTLS

Base CoreCrypto Bytes TCP TLSConstants TLSInfo Error Range
Handshake/CCS
/ Alert AppData
Sig RSAKey DHGroup PFOtOCOl PI"OtOCOl
PRF
SessionDB
Extensions /
Handshake (and CCS) Alert Datastream
AppData
Dispatch
TLS API v
TLS
AuthPlain Application RPCPlain Adversa ry
Auth RPC

MAC

Encode

Enc

8

LHAEPIlain

LHAE
7

StPlain

StAE

TLSFragment

Record

TLS
Record

Untyped API

y

Untyped Adversary

DHGroup.html
DH.html
CRE.html
PRF.html
RSA.html
Cert.html
Sig.html
SessionDB.html
StatefulLHAE.html
LHAE.html
Enc.html
MAC.html
Record.html
Dispatch.html
TCP.html
Encode.html
LHAEPlain.html
StatefulPlain.html
TLSFragment.html
Alert.html
DataStream.html
Handshake.html
TLSInfo.html
TLSConstants.html
AppData.html
Bytes.html
UTLS.html
RPC.html
Nonce.html
TLS.html
CoreCrypto.html
RSAKey.html
Game.php/?game=1
Game.php/?game=1
Game.php/?game=3
Game.php/?game=3
Game.php/?game=4
Game.php/?game=4
Game.php/?game=5
Game.php/?game=5
Game.php/?game=6
Game.php/?game=6
Game.php/?game=7
Game.php/?game=7
Extensions.html
Game.php/game=2
Game.php/game=2
Range.html
Game.php/?game=7
Game.php/?game=7
Game.php/?game=7
Game.php/?game=7
Error.html

our main
TLS API
(outline)

Each application creates
and runs session &
connections in parallel

* Parameters select

ciphersuites and
certificates

* Results provide
detailed information
on the protocol state

type cn // for each local instance of the protocol

// creating new client and server instances
val connect: TcpStream -> params -> (;Client) nullCn Result
val accept: TcpStream -> params -> (;Server) nullCn Result

// triggering new handshakes, and closing connections
val rehandshake: c:cn{Role(c)=Client} -> cn Result
val request: c:cn{Role(c)=Server} -> cn Result
val shutdown: c:cn -> TcpStream Result

// writing data

type (;c:cn,d:(;c,OutStream(c)) data) ioresult_o =

| WriteComplete of c':cn

| WritePartial of c':cn * rest:(;c’,0OutStream(c’)) data

| MustRead of c':cn

val write: c:cn -> d:(;c,OutStream(c)) data -> (;c,d) ioresult_o

// reading data

type (;c:cn) ioresult_i =

Read of c':cn * d:(;c,InStream(c)) data
CertQuery of c'
Handshake of c
Close of TcpStream

Warning of c':cn * a:alertDescription
Fatal of a:alertDescription

val read : c:cn -> (;c) ioresult_i

:ch
':cn

Interoperability & Performance

reference code vs
production code

Sufficient for simple applications.

We miss system engineering:
custom memory manager,
crypto hardware acceleration,
low-level countermeasures...

300

200

100

Handshake (Sessions/S) RSA
305, 20 292 57 419w 45
miTLS OpenSSL JSSE

® RC4-MDS5

Transport ® RCA-SHA

Layer (MB/S)
3DES-SHA
Bl _ mmmm I I I. [| |

miTLS: A Verified Reference ﬁ l

T

Implementation for TLS 1=
LS

We get strong, usable, conditional application security

We trust... 1.

verification tools: F7, Z3, EasyCrypt
now: mechanized theory using Coq/SSReflect
next: certified F* tools and SMT solver

cryptographic assumptions

now: concrete reductions using Easycrypt
next: mechanized proofs using relational probabilistic logic

the F# compiler and runtime: Windows and .NET
next: minimal TCB running e.g. on isolated core (SGX)

core cryptographic providers
next: correctness for selected algorithms (elliptic curves)

Milestone in verified software: cf Leroy’s CompCert (2009) or Klein et al’s L4.verified (2010)

Triple handshake attack

A Few Thoughts on Cryptographic Engineering

Some random thoughts about crypto. Notes from a course | teach. Pictures of my dachshunds.

Thursday, April 24, 2014

Attack of the Week: Triple Handshakes (3Shake)

The other day Apple released a major security update that
fixes a number of terrifying things that can happen to your
05/X and 105 devices. You should install it. Not only does this
fix a possible remote code execution vulnerability in the JPEG
parser (1), it also patches a TLS/SSL protocol bug known as
the "Triple Handshake" vulnerability. And this is great timing,
since Triple Handshakes are something I've been meaning
(and failing) to write about for over a month now.

But before we get there: a few points of order.

o o) 3Shake logo designed by @R
First, if Heartbleed taught us one thing, it's that when it comes
to TLS vulnerabilities, branding is key. Henceforth, and with apologies to Bhargavan, Deligr
Lavaud, Pironti, Fournet and Strub (who actually discovered the attack™), for the rest of this
be referring to the vulnerability simply as "3Shake". I've also taken the liberty of commissior
logo. | hope you like it.

On a more serious note, 3Shake is not Heartbleed. That's both good and bad. It's good because

About Me

T, T
ﬁ % [) Matthew Green

I'm a cryptographer and
research professor at

Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS

Karthikeyan Bhargavan®

. Antoine Delignat-Lavaud®, Cédric Fournet', Alfredo Pironti* and Pierre-Yves Strub*

*INRIA Paris-Rocquencourt TMicrosoft Research IMDEA Software Institute

Absrmcr TL. s was

igned as a transparent channel abstrac-

ainst attackers that may control some clients,
y have ﬂm capa m to tamper with ncmouk

ve

of those of a secure rhamlcl ding to a vari lcl\ of lltlcks

We show how some widespread false beliefs about these guar-

antees can be exploited to attack popular applicati

1 standard authentic: methods that re
S. We present new client impersonati

.

and channel-bound cool t combinations of
RSA and Diffie-Hellmal 3 sumption, and
renegotiation to byp: many recent counterme: We also
demonstrate new ways to exploit known weaknesses of HTTP
over TLS. We investigate the root causes for these attacks and
propose new countermeasures. At the protocol level, we design
and implement two new TLS extensions that strengthen the
authentication guarantees of the handshake. At the application
level, we develop an exemplary HTTPS client library that
implements several mitigations, on top of a previously verified
TLS implementation, and verify that their composition provides
strong, simple application security.

sessions, validating certificates, etc. Meanwhile, TLS appli-
cations continue to rely on URLs, passwords, and cookies;
they mix secure and insecure transports; and they often ignore
lower-level signals such as handshake completion, session
resumption, and truncated connections.

Many persistent problems can be blamed on a mismatch
between the authentication guarantees expected by the appli-
cation and those actually provided by TLS. To illustrate our
point, we list below a few myths about those guarantees, which
we debunk in this paper. Once a connection is established:

1) the principal at the other end cannot change:

2) the master secret is shared only between the two peers,

so it can be used to derive fresh application-level keys:

3) the tls-unique channel binding [6] uniquely identi-

fies the connection:

4) the connection authenticates the whole data stream, so it

is safe to start processing application data as it arrives.
The first is widely believed to be ensured by the TLS renego-
tiation extension [49]. The second and third are used for man-
in-the-middle protections in tunneled protocols like PEAP and
some authentication modes in SASL and GSS-APL The fourth

NIIOR B SILALLOG L R R R

Heartbleed was nasty and 3Shake really isn't anywhere near as dangerous. It's bad since, awful as it
was, Heartbleed was only an implementation vulnerability — and one in a single TLS library to boot.

3Shake represents a novel and fundamental bug in the TLS protocol.

The final thing you should know about 35hake is that, according to the cryptographic literature, it

shouldn't exist.

Popular Posts

P

View my complete profile

On the NSA
Let me tell you the story

P T T T ST T

F* - Latest in an Evolution of Languages

Earlier (without SMT):

Sage,
Cayenne, Fable F7 Fine FXF5 ... F* v0.6 ... monadic F* ... relational F* . {/F* version 1.0 *

DML,

ATS, ...
2007 2008 2010 2012 2013 2014 2015

* Symbolic and computational models for cryptography (F7)
* A type-preserving compiler to .NET bytecode (Fine)

e Security of an implementation of the TLS 1.2 standard (F7)
» Self-certification: Certifying F* using F* and Coq

e A fully abstract compiler from F* to JavaScript

 TS*: An embedded, secure subset of TypeScript

* RF*: Probabilistic relational logic for verified cryptography

e F*v1.0:
Open source, programmed entirely in F*, bootstrapped in OCaml and F#.
More streamlined, expressive, and efficient than prior versions.

Summary of Lecture 3

We consider applications of F7, its successor F*, and
adaptations of this work to programs in C

Plenty of scope to adapt these techniques to other
applications of cryptographic programming!

fosad2015

