
The Problem of Handling Multiple Headers

in WS-Security Implementations

Ernesto Damiani, Valerio Coviello, Fulvio Frati

Computer Science Department

Università degli Studi di Milano

Milan, Italy

{ernesto.damiani, fulvio.frati}@unimi.it

valerio.coviello@studenti.unimi.it

Claudio Santacesaria

Research&Development Department

Rototype S.p.A.

Milan, Italy

claudio.santacesaria@rototype.com

Abstract—This paper discusses some practical problems

encountered when generating multiple WS-Security

confidentiality headers to be handled by different intermediaries

along the SOAP message delivery chain of a real banking

application. A patch using a special-purpose encryption

component is described.

Keywords—WS-Security, SOAP, banking application, security

header.

I. INTRODUCTION

SOAP is a widespread standard for encoding messages
exchanged within Service Oriented Architectures (SOA).
Version 1.2 was introduced as early as 2003 [1] as an XML
based messaging protocol that consists of three parts: an
envelope, which defines a framework for describing what is in
a message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and
responses.

While many applications rely on a basic point-to-point
scenario where a client uses SOAP messages over HTTP to
send parameters to a remote Web service, the SOAP standard
XML-based data model can be used for exchanging
information between peers in any decentralized, distributed
environment.

A more complex scenario is the one of a delivery chain,
where some parts of a SOAP message (called header blocks)
are intended for being intercepted by one or more SOAP
intermediaries on the message path to the ultimate receiver. A
SOAP intermediary is any application that is capable of both
receiving and forwarding SOAP messages. According to the
standard, a SOAP intermediary should not forward a SOAP
header block intended for it, but consume it locally, unless the
block contains a special attribute enabling relay. This feature is
particularly relevant to Web service security and was first
proposed in [2].

Later, the WS-Security standard introduced some special
SOAP headers that contain information needed to protect

message integrity, message confidentiality, and single message
authentication. WS-Security headers can be used to describe a
wide variety of security models and encryption technologies.

Coupling WS Security headers with intermediaries along
message paths should enable powerful design patterns for
sharing responsibilities when enforcing protection policies [3].
In some of these patterns [4], a SOAP message carries multiple
headers for protecting integrity or confidentiality of different
XML sub-trees within the message. Since each header can be
handled by a different intermediary, the pattern can delegate
decryption or signature control to different agents [5].
However, as we shall see, WS-Security implementations may
not support generating and handling multiple security headers.
This paper, after presenting a motivating scenario (Section II)
describes some issues of WS Security implementations
(Section III) and introduces the problem of handling multiple
WS-Security headers (Section IV). Then, it outlines a practical
solution (Section V). Section VI draws the conclusion and
discusses perspectives for future work.

II. MOTIVATING SCENARIO: DIGITAL CHECKS

Today, most banks are operating by offering Web-based
services that allow customers to access their private profile,
check details relative to their account, and execute a growing
set of banking operations. Such remote services need to satisfy
a number of challenging security requirements to ensure that
customers access them with the same confidence level they
would have in a bank branch’s front desk. An emerging new
service is the one giving customers the opportunity of
managing digital checks through an online interface.

Digital checks are an evolution of traditional ones, where
new elements have been added to the classic check template.
These elements carry machine-readable, certified information
on (i) the identity of the drawee, namely the bank that supplies
the empty check to the user, (ii) the identity of the drawer,
namely the person authorized by the drawee to draw the check,
and (iii) the integrity and consistency of the data filled in the
check.

Figure 1: Digital checks process.

The goal of the introduction of the digital check is, in
particular, supporting the use of checks in the context of Web-
based banking.

Furthermore, there is also the need of protecting checks
from new, sophisticated frauds, preventing tampering and
unauthorized modifications. Finally, the digital check will
allow automatic verification of check authenticity using
standard digital cameras rather than costly special-purpose
devices.

The exploitation of check images can pave the way to more
complex and value-added operations, like the possibility for a
customer to cash in checks sent by remote drawers. In that
case, the drawee will prepare the digital check, with all the new
graphic elements in the right place. In particular, a QR code
printed on the front will include all the information related to
the drawee bank. The drawee will send the check to the drawer
that will fill and use it when needed.

The final receiver of the check (payee) will cash it in,
scanning the check in ATMs equipped with the specific QR
code reader, and, in particular, will be able to verify the data on
the check using a mobile client and the provided web services.
The client will scan the QR code and will ask to the payee to
insert the amount, his/her name, the issuing date, and the
control code printed on the check. The data will be sent to the
drawee bank, through the payee’s personal bank that will act as
intermediary confirming the validity and integrity of the check.

Furthermore, the intermediary will verify the consistency of
the digital signature included in the QR code and verify that the

amount is available on the drawer account. Figure 1 depicts the
digital check process described above.

When implementing this process on a SOA, all services
described above should rely on security protocols to guarantee
the integrity and confidentiality of the check data, supporting
the high level of privacy the bank needs to assure dealing with
this information.

III. IMPLEMENTATION OF SECURITY STANDARD

The WS-Security protocol defines how security headers
will be represented and managed within the SOAP envelope.
Furthermore, it includes a set of libraries to sign, encrypt, and
decrypt the message, or parts of the message, exploiting the
XML Encryption and XML Signature standards. In practice,
the basic point-to-point scenario where a client using SOAP
messages over HTTP to send to remote Web service whose
confidentiality and integrity are protected by WS-Security, can
be easily implemented through a basic configuration of AXIS
and Apache Tomcat.

In the point-to-point scenario, WS-Security headers are
used to define which security features (e.g., signature,
encryption, or timestamp) need to be activated for inbound and
outbound SOAP messages. For instance, a header can be used
to protect the integrity of incoming messages with a digital
signature, while another specifies how the body of the message
is encrypted.

It is easy to see that the process described in Section II
needs an intermediate actor acting as a proxy from the payee to

the drawee bank. The intermediary, i.e. the payee bank, will
authenticate its customer, verify if the request can be satisfied
directly by the bank itself (when the bank is also the drawee of
the check), and then it will forward it to the actual drawee.

It is important to remark that the configuration of the WS-
Security stack to manage the intermediary presents big
differences with the basic point-to-point scenario. In particular,
since the intermediary bank has to decrypt only those parts of
the message that are needed to authenticate the user and to
identify the drawer of the check, the message needs to be
managed in two stages, protecting data that are directed to the
final receiver.

Specifically, the client needs to encrypt with the
intermediary’s public key those information needed to
authenticate the user and pay the check, namely a web banking
username and password, payee name, amount, check code line,
and drawee bank information. Then, the client needs to encrypt
with the public key of the drawee bank all the fields that are
requested by the system to validate and verify the signature in
order to cash in the check, namely the fields signature
algorithm and crcCode, as written by the customer on the
check. This way, the intermediary node will not be able to read
the protected data that can be decrypted only by the actual
drawee bank.

IV. DOUBLE SECURITY HEADER PROBLEM

In principle, the scenario depicted in Section III can be
straightforwardly implemented following the classical WS-
Security guidelines for protecting web services, claiming to
guarantee confidentiality and integrity of data also in delivery
chain scenarios [3] with more than one intermediary.

However, in our first Axis-based implementation we
noticed that even if the actors were configured following all the
best practices indicated in the standard guidelines [8], the client
failed in creating all the security headers needed for the
message. As we have seen, in case of delivery chain
communication, a different security header must be generated
for each node that participates in the process. In our case, each
SOAP envelope must contain a security header for the
intermediary bank, and one for the drawee bank. However, the
envelopes produced by the development environment
contained a single security header. In this way, it was not
possible to apply the double encryption scheme with two
distinct public keys, and the interception of the SOAP message
by the intermediary generated a “Security processing failed”
exception. In fact, the single security header produced by the
client was processed by the intermediary, which could read
also the data directed to the final receiver. The intermediary
tried to manage data that were encrypted with the drawee
public key, which is not in its possess, thus generating the
exception.

Figure 2 presents the security header as produced by the
WS-Security stack in the client application. It should be noted
that the header contains two EncryptedKey and ReferenceList
elements, respectively for the intermediary and the final
receiver nodes, but inside the same header.

Figure 2: security header as-is

To further analyze the problem, we modified the SOAP

message in Figure 2 using the SoapUI1 tool to add the missing
security header. Figure 3 showcases the envelope we crafted
using the tool and containing the two headers.

The first header is intended to be managed by the
intermediary node. The value “1” in the mustUnderstand
attribute indicates the security header will be processed by the
intermediary, which will decrypt the elements included in
ReferenceList. Instead, the second header contains the value 0
in the MustUnderstand attribute, indicating that the
intermediary should skip the element indicated in the reference
list.

The intermediary will then process the first header only,
and forward the message, removing the first header, to the
drawee bank service. The second header remains included in
the message and is used by the drawee to decrypt the data;
following this procedure, the process is concluded correctly
preserving the privacy and integrity of the data.

1 http://www.soapui.org/

Figure 3: Security Header to be

The manual procedure can be considered as an evidence of

a problem in the development environment’s support of WS-
Security stack to manage the delivery chain scenario, since the
application works correctly using the double header.

In order to provide a temporary patch to this problem, we
then focused on developing a component that will allow the
recovering and preserving the data inside the security header
which the intermediary discards after processing the header.

V. PROPOSED SOLUTION

Our proprietary solution consists in a-priori encryption of
the data directed to the drawee before creating the SOAP
envelope, and including that data inside the SOAP envelope
that will be created and sent to the intermediate service.

This way, when the intermediary node receives the
message, it will decrypt it, since the mustUnderstand flag is set
to 1. After reading the message’s body, the intermediary has all
the information needed to manage the check and to determine
if it can be managed internally or should be forwarded to the
drawee bank. If the intermediary is also the final receiver, then
it will decrypt the additional data with its own private key and
will execute the full verification of the check. Otherwise, the
intermediary service will create a new SOAP envelope starting

from the one received by the user, but modifying the security
header in order to be managed by the drawee service. We take
as pre-requisite that the banks that participate in the digital
check program owns all the public keys of the banks in the
circuit.

When the drawee service receives the message and verifies
the validity and integrity of the data, it will send an
acknowledgement to the intermediary indicating if the process
has concluded successfully (or not). Then, the intermediary
will forward the acknowledgement to the customer. The
message will be again encrypted with the public key of the
intermediary, first, and then sent in plain text to the customer.
The latter is justified by the fact that the digital check
framework will not request each customer to own a public key.

It is important to remark that all the communication
between the payee and the intermediary bank will be executed
exploiting a HTTPS channel, thus giving a good level of
security during the delivery of the final confirmation message.
Finally, the encryption methods implemented in our solution
apply the RSA algorithm on all the selected elements, and the
values have been further encoded using Base64 to avoid
problems during the transmission of the strings.

A. System Configuration

The system has been developed in Java using Eclipse and
deployed under Apache Tomcat 7.0. Axis22 has been chosen as
web services engine. In the following, we give an overview of
the most important configuration files used to set up the
proprietary solution.

The WS-Security stack functionalities are provided within
the engine through the open source module Rampart3. Figure 4
shows the configuration needed to select the encryption method
used by the client.

The intermediary node configuration inside the Axis2
service.xml file indicates that the inbound messages need to be
encrypted (see Figure 5), while to the outbound communication
should only be added the timestamp. Please note that the
security between the intermediary and the drawee services is
managed by the proprietary tool and not by WS-Security
directly.

Figure 4: Client-side encryption.

2 http://axis.apache.org/
3 http://axis.apache.org/axis2/java/rampart/

Figure 5: Intermediary service configuration.

The drawee service has been configured to understand the
data received by the intermediary through the decrypt function
shown in Figure 6. The function will decrypt the nodes
included in the reference list.

Finally, the listing in Figure 7 configures the drawee
service in order to manage encrypted communication with the
intermediary nodes, since all the banks in the circuit own
public/private key pairs, and the communication should be
protected in both directions.

However, differently for the client, the encryption will be
applied on the full body of the message, and the envelope will
include only one security header.

VI. CONCLUSIONS

In this paper we described some open issues shown by WS

Security implementations when handling multiple WS-

Security headers that may prevent effective applications of

complex security patterns. We plan to extend our analysis to

other development environments. In parallel, we are working

toward improving the performance of security enforcement on

delivery chains by allowing intermediaries to handle multiple

similar messages [7].

Figure 6: Final Receiver decryption function.

Figure 7: Drawee service configuration.

ACKNOWLEDGMENT

This work was partly supported by the Italian MIUR
project SecurityHorizons (c.n. 2010XSEMLC) and by the EU-
funded project CUMULUS (contract n. FP7-318580).

REFERENCES

[1] M Gudgin, M Hadley, N Mendelsohn, JJ Moreau et al.: SOAP Version
1.2, W3C RFC 2003. Available at: http://www.w3.org/TR/2001/WD-
soap12-20010709/, 2014.

[2] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati:
Securing SOAP e-services. Int. J. Inf. Sec. 1(2): 100-115, 2002.

[3] M. A. Rahaman, A. Schaad, and M. Rits, "Towards secure SOAP
message exchange in a SOA, " in SWS '06: Proceedings of the 3rd ACM
workshop on Secure Web Services. ACM Press, 2006, pp. 77-84, 2006.

[4] N. Gruschka, M. Jensen, L. Lo Iacono: A Design Pattern for Event-
Based Processing of Security-Enriched SOAP Messages. ARES 2010:
410-415, 2010.

[5] M. Jensen, N. Gruschka: Privacy Against the Business Partner: Issues
for Realizing End-to-End Confidentiality in Web Service Compositions.
DEXA Workshops 2009: 117-121, 2009.

[6] J. Tekli, E. Damiani, R. Chbeir, G. Gianini: SOAP Processing
Performance and Enhancement. IEEE T. Services Computing 5(3): 387-
403, 2012.

[7] E. Damiani, S. Marrara: Using XML Similarity to Enhance SOAP
Messages Security. International Conference on Internet Computing
2008: 260-265, 2008.

[8] Apache Software Foundation: Apache Rampart-Axis2 Security Module.
Available at: http://axis.apache.org/axis2/java/rampart/index.html, 2014.

http://www.w3.org/TR/2001/WD-soap12-20010709/
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://axis.apache.org/axis2/java/rampart/index.html

