
OAuth 2.0
From scratch



What is OAuth 2

• OAuth 2 is an authorization framework that enables applications to 
obtain limited access to user accounts on an HTTP service, such as
Facebook, GitHub, and DigitalOcean.

• It works by delegating user authentication to the service that hosts
the user account, and authorizing third-party applications to access
the user account. 

• OAuth 2 provides authorization flows for web and desktop 
applications, and mobile devices.



Roles

OAuth defines four roles:

•Resource Owner

•Client

•Resource Server

•Authorization Server



Roles in detail

• Resource Owner: User
• The resource owner is the user who authorizes an application to access their

account. The application’s access to the user’s account is limited to the “scope” of 
the authorization granted (e.g. read or write access).

• Resource / Authorization Server: API
• The resource server hosts the protected user accounts, and the authorization server 

verifies the identity of the user then issues access tokens to the application.

From an application developer’s point of view, a service’s API may fulfil both
the resource and authorization server roles. We will refer to both of these
roles combined, as the Service /API role.
• Client: Application

• The client is the application that wants to access the user’s account. Before it may do 
so, it must be authorized by the user, and the authorization must be validated by the 
API.



Protocol flow



Step-by-step

• The application requests authorization to access service resources from the user

• If the user authorized the request, the application receives an authorization grant

• The application requests an access token from the authorization server (API) by 
presenting authentication of its own identity, and the authorization grant

• If the application identity is authenticated and the authorization grant is valid, 
the authorization server (API) issues an access token to the application. 
Authorization is complete.

• The application requests the resource from the resource server (API) and 
presents the access token for authentication

• If the access token is valid, the resource server (API) serves the resource to 
the application
• The actual flow of this process will differ depending on the authorization grant type in use.



Application Registration

• Before using OAuth with your application, you must register your
application with the service. This is done through a registration form
in the “developer” or “API” portion of the service’s website, where
you will provide the following information (and probably details about
your application):
• Application Name
• Application Website
• Redirect orCallback URL

• The callback is where the service will redirect the user after they
authorize (or deny) your application, and therefore the part of your
application that will handle authorization codes or access tokens.



Client Secret

• Once your application is registered, the service will issue “client 
credentials” in the form of a client identifier and a client secret. 

• The Client ID is a publicly exposed string that is used by the service 
API to identify the application, and is also used to build authorization
URLs that are presented to users. 

• The Client Secret is used to authenticate the identity of the 
application to the service API when the application requests to access
a user’s account, and must be kept private between the application
and the API.



Authorization Grant

• In the Abstract Protocol Flow , the first four steps cover obtaining an 
authorization grant and access token. 

• The authorization grant type depends on the method used by the 
application to request authorization, and on the grant types supported by 
the API. 

• OAuth 2 defines four grant types, each of which is useful in different cases:
• Authorization Code: used with server-side Applications
• Implicit: used with Mobile Apps or Web Applications (applications that run on the 

user’s device)
• Resource Owner Password Credentials: used with trusted Applications, such as

those owned by the service itself
• Client Credentials: used with Applications API access



Grant Type: Authorization Code

• The authorization code grant type is the most commonly used
because it is optimized for server-side applications, where source 
code is not publicly exposed, and Client Secret confidentiality can be 
maintained. 

• This is a redirection-based flow, which means that the application
must be capable of interacting with the user-agent (i.e. the user’s
web browser) and receiving API authorization codes that are routed
through the user-agent.



Grant Type: Authorization Code



Step 1

• First, the user is given an authorization code link that looks like the 
following:

• https://cloud.digitalocean.com/v1/oauth/authorize?response_type=code&
client_id=CLIENT_ID&redirect_uri=CALLBACK_URL&scope=read

• Here is an explanation of the link components:
• https://cloud.digitalocean.com/v1/oauth/authorize: the API authorization endpoint
• client_id=client_id: the application’s client ID (how the API identifies the application)
• redirect_uri=CALLBACK_URL: where the service redirects the user-agent after an 

authorization code is granted
• response_type=code: specifies that your application is requesting an authorization

code grant
• scope=read: specifies the level of access that the application is requesting



Step 2

When the user clicks the link, she must first log in to the service, to 
authenticate her identity (unless she’salready logged in). Then she will
be prompted by the service to authorize or deny the application access
to their account. 

Here is an example of the authorize application prompt:



Step 3

If the user clicks “Authorize Application”, the service redirects the user-
agent to the application redirect URI, which was specified during the 
client registration, along with an authorization code. 

The redirect would look something like this (assuming the application is
“dropletbook.com”):

https://dropletbook.com/callback?code=AUTHORIZATION_CODE



Step 4

The application requests an access token from the API, by passing the 
authorization code along with authentication details, including
the client secret, to the API token endpoint. 

Here is an example HTTP POST request to DigitalOcean’s token
endpoint:

https://cloud.digitalocean.com/v1/oauth/token?client_id=

CLIENT_ID&client_secret=CLIENT_S



Step 5

• If the authorization is valid, the API will send a response containing the 
access token (and optionally, a refresh token) to the application. The entire
response will look something like this:

{"access_token":"ACCESS_TOKEN","token_type":"bearer","exp
ires_in":2592000,"refresh_token":"REFRESH_TOKEN","scope":
"read","uid":100101,"info":{"name":" E. 
Dam","email":"edam@mac.com"}} 

• Now the application is authorized. It may use the token to access the user’s
account via the service API, limited to the scope of access, until the token
expires or is revoked. 
• If a refresh token was issued, it may be used to request new access tokens if the 

original token has expired.



Grant Type: Implicit

• The implicit grant type is used for mobile apps and web applications (i.e. 
applications that run in a web browser), where the client 
secret confidentiality is not guaranteed. 

• The implicit grant flow basically works as follows: the user is asked to 
authorize the application, then the authorization server passes the access
token back to the user-agent, which passes it to the application. 

• Comments:
• The implicit grant type is also redirection-based but the access token is given to the 

user-agent to forward to the application, so it may be exposed to the user and other
applications on the user’s device. 

• Also, this flow does not authenticate the identity of the application, and relies on the 
redirect URI (that was registered with the service) to serve this purpose.

• The implicit grant type does not support refresh tokens.



The flow



Grant Type: Resource Owner Password Credentials

• With the resource owner password credentials grant type, the user
provides their service credentials (username and password) directly
to the application, which uses the credentials to obtain an access
token from the service. 

• This grant type should only be enabled on the authorization server if
other flows are not viable. Also, it should only be used if the 
application is trusted by the user (e.g. it is owned by the service, or 
the user’s desktop OS).



The flow

• After the user gives their credentials to the application, the 
application will then request an access token from the authorization
server. The POST request might look something like this:

• https://oauth.example.com/token?grant_type=password&use
rname=USERNAME&password=PASSWORD&client_id=CLIENT_ID

• If the user credentials check out, the authorization server returns an 
access token to the application. 



Grant Type: Client Credentials

• The client credentials grant type provides an application a way to 
access its own service account. 

• Examples of when this might be useful include if an application wants
to update its registered description or redirect URI, or access other
data stored in its service account via the API.



The flow

• The application requests an access token by sending its credentials, 
its client ID and client secret, to the authorization server. An example
POST request might look like the following:

• https://oauth.example.com/token?grant_type=client_crede
ntials&client_id=CLIENT_ID&client_secret=CLIENT_SECRET

•

• If the application credentials check out, the authorization server 
returns an access token to the application. 

https://oauth.example.com/token?grant_type=client_credentials&client_id=CLIENT_ID&client_secret=CLIENT_SECRET

