OAuth 2.0

From scratch



What is OAuth 2

* OAuth 2 is an authorization framework that enables applications to
obtain limited access to user accounts on an HTTP service, such as
Facebook, GitHub, and DigitalOcean.

* It works by delegating user authentication to the service that hosts
the user account, and authorizing third-party applications to access
the user account.

* OAuth 2 provides authorization flows for web and desktop
applications, and mobile devices.



Roles

OAuth defines four roles:
*Resource Owner

*Client

*Resource Server

* Authorization Server



Roles in detalil

* Resource Owner: User

* The resource owner is the user who authorizes an application to access their
account. The application’s access to the user’s account is limited to the “scope” of

the authorization granted (e.g. read or write access).

* Resource / Authorization Server: API

* The resource server hosts the protected user accounts, and the authorization server
verifies the identity of the user then issues access tokens to the application.

From an application developer’s point of view, a service’s APl may fulfil both
the resource and authorization server roles. We will refer to both of these

roles combined, as the Service /API role.

* Client: Application
* The client is the application that wants to access the user’s account. Before it may do
so, it must be authorized by the user, and the authorization must be validated by the
API.



Protocol flow

Abstract Protocol Flow

Application
(Client)

1. Authorization Reguest

2. Authorization Grant

3. Authorization Grant

4. Access Token

5. Access Token

B6. Protected Resource

User

(Resource Owner)

Authorization
Server

Resource
Server

Service API



Step-by-step

* The application requests authorization to access service resources from the user
* If the user authorized the request, the application receives an authorization grant

* The application requests an access token from the authorization server (APIl) by
presenting authentication of its own identity, and the authorization grant

* |f the application identity is authenticated and the authorization grant is valid,
the authorization server (API) issues an access token to the application.
Authorization is complete.

* The application requests the resource from the resource server (API) and
presents the access token for authentication

* |f the access token is valid, the resource server (API) serves the resource to
the application
* The actual flow of this process will differ depending on the authorization grant type in use.



Application Registration

* Before using OAuth with your application, you must register your
application with the service. This is done through a registration form
in the “developer” or “AP1” portion of the service’s website, where
you will provide the following information (and probably details about
your application):

e Application Name
* Application Website
e Redirect orCallback URL

* The callback is where the service will redirect the user after they
authorize (or deny) your application, and therefore the part of your
application that will handle authorization codes or access tokens.



Client Secret

* Once your application is registered, the service will issue “client
credentials” in the form of a client identifier and a client secret.

* The Client ID is a publicly exposed string that is used by the service
APl to identify the application, and is also used to build authorization
URLs that are presented to users.

* The Client Secret is used to authenticate the identity of the
application to the service APl when the application requests to access
a user’s account, and must be kept private between the application
and the API.



Authorization Grant

* In the Abstract Protocol Flow , the first four steps cover obtaining an
authorization grant and access token.

* The authorization grant type depends on the method used by the
aﬁ)pl'&clfltion to request authorization, and on the grant types supported by
the :

* OAuth 2 defines four grant types, each of which is useful in different cases:
* Authorization Code: used with server-side Applications

* Implicit: used with Mobile Apps or Web Applications (applications that run on the
user’s device)

* Resource Owner Password Credentials: used with trusted Applications, such as
those owned by the service itself

* Client Credentials: used with Applications API access



Grant Type: Authorization Code

* The authorization code grant type is the most commonly used
because it is optimized for server-side applications, where source
code is not publicly exposed, and Client Secret confidentiality can be
maintained.

* This is a redirection-based flow, which means that the application
must be capable of interacting with the user-agent (i.e. the user’s
web browser) and receiving APl authorization codes that are routed
through the user-agent.



Grant Type: Authorization Code

Authorization Code Flow

User

(Resource Owner)

-

. User Authorization Reguest

2. User Authorizes Application

User-agent

(Web Browser) A “
oplicatior uth
AI.}IJIICHHGH Authorization Code Grant . .
(Client) Server
(Service API)

L

4. Access Token Reguest

5. Access Token Grant



Step 1

* First, the user is given an authorization code link that looks like the
following:

 https://cloud.digitalocean.com/v1/oauth/authorize?response_type=code&
client_id=CLIENT ID&redirect uri=CALLBACK URL&scope=read

* Here is an explanation of the link components:

https://cloud.digitalocean.com/v1/oauth/authorize: the APl authorization endpoint
client_id=client_id: the application’s client ID (how the API identifies the application)

redirect_uri=CALLBACK_URL: where the service redirects the user-agent after an
authorization code is granted

response_type=code: specifies that your application is requesting an authorization
code grant

scope=read: specifies the level of access that the application is requesting



Step 2

When the user clicks the link, she must first log in to the service, to
authenticate her identity (unless she’salready logged in). Then she will

be prompted by the service to authorize or deny the application access
to their account.

Here is an example of the authorize application prompt:

Authorize Application

Thedropletbook App would like permission to access your account: manicas@digitalocean.com

Review Permissions
Thedropletbook App

Drop the “the".

® Read

Visit application website



Step 3

If the user clicks “Authorize Application”, the service redirects the user-
agent to the application redirect URI, which was specified during the
client registration, along with an authorization code.

The redirect would look something like this (assuming the application is
“dropletbook.com”):

https://dropletbook.com/callback?code=AUTHORIZATION CODE



Step 4

The application requests an access token from the API, by passing the
authorization code along with authentication details, including
the client secret, to the APl token endpoint.

Here is an example HTTP POST request to DigitalOcean’s token
endpoint:

https://cloud.digitalocean.com/v1l/ocauth/token?client id=
CLIENT ID&client secret=CLIENT S



Step 5

* |f the authorization is valid, the APl will send a response containing the
access token (and optionally, a refresh token) to the application. The entire
response will look something like this:

{"access token":"ACCESS TOKEN","token type":"bearer", "exp
ires 1n":2592000, "refresh token":"REFRESH TOKEN", "scope":
"read","uid":100101,"info™:{"name":" E.

Dam", "email" :"edam@mac.com"} }

* Now the application is authorized. It may use the token to access the user’s
account via the service API, limited to the scope of access, until the token
expires or is revoked.

* If a refresh token was issued, it may be used to request new access tokens if the
original token has expired.



Grant Type: Implicit

* The implicit grant type is used for mobile apps and web applications (i.e.
applications that run in a web browser), where the client
secret confidentiality is not guaranteed.

* The implicit grant flow basically works as follows: the user is asked to
authorize the application, then the authorization server Ipasses the access
token back to the user-agent, which passes it to the application.

* Comments:

* The implicit grant type is also redirection-based but the access token is given to the
user-agent to forward to the application, so it may be exposed to the user and other
applications on the user’s device.

* Also, this flow does not authenticate the identity of the application, and relies on the
redirect URI (that was registered with the service) to serve this purpose.

* The implicit grant type does not support refresh tokens.



The flow

Implicit Flow
User
(Resource Owner)
User-agent
(Web Browser)
Application
(Client)

(4)

(3)

1. User Authorization Request

2. User Authorizes Application

Auth

Server
(Service API)

3. Redirect URI with Access Token

4. Follow Redirect URI (Retain Token)

5. Send Token Extract Script

6. Pass Token to Application



Grant Type: Resource Owner Password Credentials

* With the resource owner password credentials grant type, the user
provides their service credentials (username and password) directly
to the application, which uses the credentials to obtain an access

token from the service.

* This grant type should only be enabled on the authorization server if
other flows are not viable. Also, it should only be used if the
application is trusted by the user (e.g. it is owned by the service, or
the user’s desktop OS).



The flow

» After the user gives their credentials to the application, the
application will then request an access token from the authorization
server. The POST request might look something like this:

* https://oauth.example.com/token?grant type=passwordé&use
rname=USERNAME &¢password=PASSWORD&client 1d=CLIENT ID

* |f the user credentials check out, the authorization server returns an
access token to the application.



Grant Type: Client Credentials

* The client credentials grant type provides an application a way to
access its own service account.

* Examples of when this might be useful include if an application wants
to update its registered description or redirect URI, or access other
data stored in its service account via the API.



The flow

* The application requests an access token by sending its credentials,
its client ID and client secret, to the authorization server. An example
POST request might look like the following:

* https://oauth.example.com/token?grant type=client crede

ntials&client 1d=CLIENT ID&client secret=CLIENT SECRET

* If the application credentials check out, the authorization server
returns an access token to the application.


https://oauth.example.com/token?grant_type=client_credentials&client_id=CLIENT_ID&client_secret=CLIENT_SECRET

