Security in Process Calculi

Service Oriented Architectures

Module 1 - Basic technologies

Ernesto Damiani

Universita degli Studi di Milano

Overview

Pi calculus

e Core language for parallel programming

e Modeling security via name scoping
Applied pi calculus

e Modeling cryptographic primitives with

functions and equational theories

e Equivalence-based notions of security

e A little bit of operational semantics

e Security as testing equivalence

Pi Calculus
[Milner et al.]

Fundamental language for concurrent systems

e High-level mathematical model of parallel processes
e The “core” of concurrent programming languages

e By comparison, lambda-calculus is the “core” of functional
programming languages

Mobility is a basic primitive

e Basic computational step is the transfer of a
communication link between two processes

e Interconnections between processes change as they
communicate

Can be used as a general programming language

A Little Bit of History

1980: Calculus of Communicating Systems (CCS) [Milner]

1992: Pi Calculus [Milner, Parrow, Walker]
e Ability to pass channel names between processes
1998: Spi Calculus [Abadi, Gordon]
e Adds cryptographic primitives to pi calculus
e Security modeled as scoping
e Equivalence-based specification of security properties
e Connection with computational models of cryptography
2001: Applied Pi Calculus [Abadi, Fournet]

e Generic functions, including crypto primitives

Pi Calculus Syntax

Terms
e M,N ::= X variables } Let u range over
| n names names and variables
Processes
e PQ ::= nil empty process
U(N).P send term N on channel u
u (X) P receive term from channel P and assign to x
P replicate process P
P | Q run processes P and Q in parallel
(vn)P restrict name n to process P

Modeling Secrecy with Scoping

A sends M to B over secure channel c

()
channel ¢

A (M) = &(M)
B = c¢c(x).nil
P(M) = (vc) (A(M) [B)
\‘ This restriction ensures that channel c is

“invisible” to any process except A and B
(other processes don’t know name c)

Secrecy as Equivalence

_ Without (vc), attacker could run

A (M) — C<M> process c(x) and tell the difference
B -~ - (o) n l 1 between P(M) and P(M")
) 7
P (M) = (A (M) |B)

P(M) and P(M’) are “"equivalent” for any values of M
and M’

e No attacker can distinguish P(M) and P(M’)
Different notions of “equivalence”

e Testing equivalence or observational congruence

e Indistinguishability by any probabilistic polynomial-time
Turing machine

Another Formulation of Secrecy

A (M) = (M)
B = c(x).nil
P(M) = (vc) (A(M) [B)

No attacker can learn name n from P(n)

e Let Q be an arbitrary attacker process, and
suppose it runs in parallel with P(n)

Modeling Authentication with Scoping

A sends M to B over secure channel c

B announces received value on public channel d

A > >
channel ¢ channel d

A(M) = c(M)
B = c(x).
P(M) = (vc) (A(M) [B)

Specifying Authentication

A (M) = &(M)
B = c(x).dx)
P(M) = (vc) (A(M) |B)

For any value of M, if B outputs M on channel
d, then A previously sent M on channel c

1.

2.

3.

A Key Establishment Protocol

Send name C,g Send name C,g

Cas Csg
Create new M B M
channel C,g >
Send data on C,g channel d
A and B have pre-established pairwise keys with server S

€ Model these keys as names of pre-existing communication channels
A creates a new key and sends it to S, who forwards it to B
€ Model this as creation of a new channel name

A sends M to B encrypted with the new key, B outputs M

Key Establishment in Pi Calculus

@ Send name C,g
Cas Css

Send name C,g

Create new M B M
channel C,g >
Send data on C,g channel d
A (M) = (vCug) CrslCan)- CanlM)
S Cas (=) : CTS_B<X>_ Note communication on a channel
B CSB (<)) d(y) with a dynamically generated name
)

(vegg) (A(M) IB|S)

Applied Pi Calculus

In pi calculus, channels are the only primitive

This is enough to model some forms of security

e Name of a communication channel can be viewed as an
“encryption key” for traffic on that channel

—A process that doesn’t know the name can’t access the channel

e Channel names can be passed between processes
—-Useful for modeling key establishment protocols

To simplify protocol specification, applied pi calculus adds
functions to pi calculus

e Crypto primitives modeled by functions and equations

Applied Pi Calculus: Terms

M, N ::= X Variable
| N Name

| Function application

Standard functions
e pair(), encrypt(), hash(), ...

Simple type system for terms
e Integer, Key, Channel{Integer), Channel(Key)

Applied Pi Calculus: Processes

P,Q ::= nil

u(N).P
u(x).pP

P

P|Q

(vn)P

if M =N
then P else Q

empty process

send term N on channel u

receive from channel P and assign to x
replicate process P

run processes P and Q in parallel
restrict name n to process P

conditional

Modeling Crypto with Functions

Introduce special function symbols to model
cryptographic primitives
Equational theory models cryptographic properties
Pairing
e Functions , , with equations:
first(pair(x,y)) = X
second(pair(x,y)) =y
Symmetric-key encryption
e Functions , with equation:
symdec(symenc(Xx,k),k)=x

More Equational Theories

Public-key encryption

e Functions plk,sk generate public/private key pair pk(x),sk(x)
from a random seed x

e Functions , model encryption and decryption with
equation:

pdec(penc(y,pk(x)),sk(x)) =y
e Can also model “probabilistic” encryption:
pdec(penc(y,pk(x),z),sk(x)) =y

Hashing Models random salt
(necessary for semantic security)

e Unary function with no equations
e hash(M) models applying a one-way function to term M

Yet More Equational Theories

Public-key digital signatures

e As before, functions plk,sk generate public/private key pair
pk(x),sk(x) from a random seed X

e Functions , model signing and verification with
equation:
verify(y,sign(y,sk(x)),pk(x)) =y
XOR

e Model self-cancellation property with equation:
xor(xor(x,y),y) = X

e Can also model properties of cyclic redundancy codes:
crc(xor(x,y)) = xor(crc(x),crc(y))

Dynamically Generated Data

Use built-in name generation capability of pi
calculus to model creation of new keys and
nonces

channel ¢ channel d

A(M) = c((M,s))

B = c¢c(x).1f segond(x)zs
then d(first (x))
P (M) = (A (M) [B)

Models creation of fresh capability | capability s may
every time A and B communicate be intercepted!

Better Protocol with Capabilities

@ (Mihash(s,M) (15 M
channel c channel d

Hashing protects integrity of
M and secrecy of s

P
AM) = &((M,))

= Cc(x).1f second(x)=
hash (s, first (x))
then d{(first (x))
P(M) = (vs) (A(M) [B)

oy,
|

Proving Security

“"Real” protocol

e Process-calculus specification of the actual protocol
“Ideal” protocol

e Achieves the same goal as the real protocol, but is secure by
design

e Uses unrealistic mechanisms, e.g., private channels
e Represents the desired behavior of real protocol

To prove the real protocol secure, show that no attacker
can tell the difference between the real protocol and the
ideal protocol

e Proof will depend on the model of attacker observations

Example: Challenge-Response

Challenge-response protocol
A—>B {i}
B> A {i+1},

This protocol is secure if it is indistinguishable
from this “ideal” protocol

A—>B {randomy },
B> A {random, },

Example: Authentication

Authentication protocol

A—>B {i},

B> A {i+1%},

A—>B “Ok”
This protocol is secure if it is indistinguishable from this
“ideal” protocol

A—>B {random, },

B—->A {random, },

A—>B “Ok” if numbers on real & magic channels match

Security as Observational Equivalend

Need to prove that two processes are
to the attacker

Complexity-theoretic model

e Prove that two systems cannot be distinguished by any
probabilistic polynomial-time adversary

[Beaver '91, Goldwasser-Levin 90, Micali-Rogaway 91]
Abstract process-calculus model

e Cryptography is modeled by abstract functions
e Prove testing equivalence between two processes

e Proofs are easier, but it is nontrivial to show computational
completeness

Structural Equivalence

P|nil=P
PIQ=QIP
PI(QIR) =(P|Q)IR
P =P | IP
(vm) (vn)P = (vn) (vm)P
(vn)nil = nil
(Vn)(P | Q) =P | (Vn)Q if n is not a free name in P
P[M/x] = P[N/x] if M=N in the equational

theory

Operational Semantics

Reduction — is the smallest relation on
closed processes that is closed by
structural equivalence and application of
evaluation contexts such that
a(M).P | a(x).Q —» P | Q[M/X]

models P sending M to Q on channel a
MthenPelseQ —» P

Nthen PelseQ — Q
for any ground M, N s.t. M = N in the equational theory

if M
if M

Equivalence in Process Calculus

Standard process-calculus notions of equivalence such
as bisimulation are not adequate for cryptographic
protocols

e Different ciphertexts leak no information to the attacker
who does not know the decryption keys

and send
different messages, but they should be treated as
equivalent when proving security
e In each case, a term is encrypted under a fresh key
e No test by the attacker can tell these apart

Testing Equivalence

Informally, two processes are equivalent if no
environment can distinguish them

A is a process R and channel name w

e Informally, R is the environment and w is the channel on
which the outcome of the test is announced

A process P (R,w) if P | R may produce an
output on channel w

e There is an interleaving of P and R that results in R being
able to perform the desired test

Two processes are if they pass the same
tests

Advantages and Disadvantages

Proving testing equivalence is hard

Need to quantify over all possible attacker processes and all
tests they may perform

There are some helpful proof techniques, but no fully
automated tools and very few decision procedures

Can compose protocols like building blocks

Direct connection with definitions of security in complexity-
theoretic cryptography

Contrast this with invariant- and trace-based definitions

Bibliography

Robin Milner. "Communication and Concurrency”. Prentice-Hall, 1989.
e Calculus of communicating systems (CCS)

Robin Milner. "Communicating and Mobile Systems: the n-Calculus”.
Cambridge University Press, 1999.

e Pi calculus

Martin Abadi and Andrew Gordon. A calculus for cryptographic protocols:
the spi-calculus”. Information and Computation 148(1), 1999.

e Spi calculus

Martin Abadi and Cedric Fournet. "Mobile values, new names, and secure
communication”. POPL 2001.

e Applied pi calculus

Martin Abadi and Phillip Rogaway. “"Reconciling two views of
cryptography”. Journal of Cryptology 15(2), 2002.

3o

o

e On equivalence of complexity-theoretic and process-calculus models +oFIN
N e 4P‘
*2 ryw;:’

+ 04
*

