
Service Oriented Architectures

Module 1 – Basic technologies

Ernesto Damiani

Università degli Studi di Milano

Security in Process Calculi

Overview

Pi calculus

• Core language for parallel programming

• Modeling security via name scoping

Applied pi calculus

• Modeling cryptographic primitives with
functions and equational theories

• Equivalence-based notions of security

• A little bit of operational semantics

• Security as testing equivalence

Pi Calculus

Fundamental language for concurrent systems

• High-level mathematical model of parallel processes

• The “core” of concurrent programming languages

• By comparison, lambda-calculus is the “core” of functional
programming languages

Mobility is a basic primitive

• Basic computational step is the transfer of a
communication link between two processes

• Interconnections between processes change as they
communicate

Can be used as a general programming language

[Milner et al.]

A Little Bit of History

1980: Calculus of Communicating Systems (CCS) [Milner]

1992: Pi Calculus [Milner, Parrow, Walker]

• Ability to pass channel names between processes

1998: Spi Calculus [Abadi, Gordon]

• Adds cryptographic primitives to pi calculus

• Security modeled as scoping

• Equivalence-based specification of security properties

• Connection with computational models of cryptography

2001: Applied Pi Calculus [Abadi, Fournet]

• Generic functions, including crypto primitives

Pi Calculus Syntax

Terms

• M, N ::= x variables

| n names

Processes

• P,Q ::= nil empty process

| ūN.P send term N on channel u

| u(x).P receive term from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (n)P restrict name n to process P

Let u range over

names and variables}

Modeling Secrecy with Scoping

A sends M to B over secure channel c

A(M) = cM

B = c(x).nil

P(M) = (c)(A(M)|B)

A B
M

channel c

This restriction ensures that channel c is
“invisible” to any process except A and B
(other processes don’t know name c)

-

Secrecy as Equivalence

P(M) and P(M’) are “equivalent” for any values of M

and M’

• No attacker can distinguish P(M) and P(M’)

Different notions of “equivalence”

• Testing equivalence or observational congruence

• Indistinguishability by any probabilistic polynomial-time
Turing machine

A(M) = cM

B = c(x).nil

P(M) = (c)(A(M)|B)

Without (c), attacker could run
process c(x) and tell the difference
between P(M) and P(M’)

-

Another Formulation of Secrecy

No attacker can learn name n from P(n)

• Let Q be an arbitrary attacker process, and
suppose it runs in parallel with P(n)

• For any process Q in which n does not
occur free, P(n) | Q will never output n

A(M) = cM

B = c(x).nil

P(M) = (c)(A(M)|B)

-

Modeling Authentication with Scoping

A sends M to B over secure channel c

B announces received value on public channel d

A(M) = cM

B = c(x).dx

P(M) = (c)(A(M)|B)

A B
M

channel c

-

M

channel d

-

Specifying Authentication

For any value of M, if B outputs M on channel

d, then A previously sent M on channel c

A(M) = cM

B = c(x).dx

P(M) = (c)(A(M)|B)

-

-

A Key Establishment Protocol

1. A and B have pre-established pairwise keys with server S

 Model these keys as names of pre-existing communication channels

2. A creates a new key and sends it to S, who forwards it to B

 Model this as creation of a new channel name

3. A sends M to B encrypted with the new key, B outputs M

A B

S

CAS CSB

Create new
channel CAB

Send name CAB Send name CAB

Send data on CAB

M

channel d

M

Key Establishment in Pi Calculus

A B

S

CAS CSB

Create new
channel CAB

Send name CAB Send name CAB

Send data on CAB

M

channel d

M

A(M) = (cAB)

S = cAS(x).cSBx

B = cSB(x)

P(M) = (cAS)(cSB)(A(M)|B|S)

__ __

__
_ Note communication on a channel

with a dynamically generated name

.cABMcAScAB

.x(y).dy

Applied Pi Calculus

In pi calculus, channels are the only primitive

This is enough to model some forms of security

• Name of a communication channel can be viewed as an
“encryption key” for traffic on that channel

–A process that doesn’t know the name can’t access the channel

• Channel names can be passed between processes

–Useful for modeling key establishment protocols

To simplify protocol specification, applied pi calculus adds

functions to pi calculus

• Crypto primitives modeled by functions and equations

Applied Pi Calculus: Terms

M, N ::= x Variable

| n Name

| f(M1,...,Mk) Function application

Standard functions

• pair(), encrypt(), hash(), …

Simple type system for terms

• Integer, Key, ChannelInteger, ChannelKey

Applied Pi Calculus: Processes

P,Q ::= nil empty process

| ūN.P send term N on channel u

| u(x).P receive from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (n)P restrict name n to process P

| if M = N conditional

then P else Q

Modeling Crypto with Functions

Introduce special function symbols to model

cryptographic primitives

Equational theory models cryptographic properties

Pairing

• Functions pair, first, second with equations:

first(pair(x,y)) = x

second(pair(x,y)) = y

Symmetric-key encryption

• Functions symenc, symdec with equation:

symdec(symenc(x,k),k)=x

More Equational Theories

Public-key encryption

• Functions pk,sk generate public/private key pair pk(x),sk(x)
from a random seed x

• Functions pdec,penc model encryption and decryption with
equation:

pdec(penc(y,pk(x)),sk(x)) = y

• Can also model “probabilistic” encryption:

pdec(penc(y,pk(x),z),sk(x)) = y

Hashing

• Unary function hash with no equations

• hash(M) models applying a one-way function to term M

Models random salt
(necessary for semantic security)

Yet More Equational Theories

Public-key digital signatures

• As before, functions pk,sk generate public/private key pair
pk(x),sk(x) from a random seed x

• Functions sign,verify model signing and verification with
equation:

verify(y,sign(y,sk(x)),pk(x)) = y

XOR

• Model self-cancellation property with equation:

xor(xor(x,y),y) = x

• Can also model properties of cyclic redundancy codes:

crc(xor(x,y)) = xor(crc(x),crc(y))

Dynamically Generated Data

Use built-in name generation capability of pi

calculus to model creation of new keys and

nonces

A(M) = c(M,s)

B = c(x).if second(x)=s

then dfirst(x)

P(M) = (s)(A(M)|B)

A B
(M,s)

channel c

-

M

channel d

-

Models creation of fresh capability
every time A and B communicate

capability s may
be intercepted!

Better Protocol with Capabilities

A(M) = c(M,hash(s,M))

B = c(x).if second(x)=

hash(s,first(x))

then dfirst(x)

P(M) = (s)(A(M)|B)

A B
(M,hash(s,M))

channel c

-

M

channel d

-

Hashing protects integrity of
M and secrecy of s

Proving Security

“Real” protocol

• Process-calculus specification of the actual protocol

“Ideal” protocol

• Achieves the same goal as the real protocol, but is secure by
design

• Uses unrealistic mechanisms, e.g., private channels

• Represents the desired behavior of real protocol

To prove the real protocol secure, show that no attacker

can tell the difference between the real protocol and the

ideal protocol

• Proof will depend on the model of attacker observations

Example: Challenge-Response

Challenge-response protocol

A  B {i}k

B  A {i+1}k

This protocol is secure if it is indistinguishable

from this “ideal” protocol

A  B {random1}k

B  A {random2}k

Example: Authentication

Authentication protocol

A  B {i}k

B  A {i+1}k

A  B “Ok”

This protocol is secure if it is indistinguishable from this

“ideal” protocol

A  B {random1}k

B  A {random2}k

B  A random1, random2 on a magic secure channel

A  B “Ok” if numbers on real & magic channels match

Security as Observational Equivalence

Need to prove that two processes are observationally

equivalent to the attacker

Complexity-theoretic model

• Prove that two systems cannot be distinguished by any
probabilistic polynomial-time adversary

[Beaver ’91, Goldwasser-Levin ’90, Micali-Rogaway ’91]

Abstract process-calculus model

• Cryptography is modeled by abstract functions

• Prove testing equivalence between two processes

• Proofs are easier, but it is nontrivial to show computational
completeness [Abadi-Rogaway ’00]

Structural Equivalence

P | nil  P

P | Q  Q | P

P | (Q | R)  (P | Q) | R

!P  P | !P

(m) (n)P  (n) (m)P

(n)nil  nil

(n)(P | Q)  P | (n)Q if n is not a free name in P

P[M/x]  P[N/x] if M=N in the equational

theory

Operational Semantics

Reduction  is the smallest relation on

closed processes that is closed by

structural equivalence and application of

evaluation contexts such that

āM.P | a(x).Q  P | Q[M/x]

models P sending M to Q on channel a

if M = M then P else Q  P

if M = N then P else Q  Q

for any ground M, N s.t. M  N in the equational theory

Equivalence in Process Calculus

Standard process-calculus notions of equivalence such

as bisimulation are not adequate for cryptographic

protocols

• Different ciphertexts leak no information to the attacker
who does not know the decryption keys

(k)csymenc(M,k) and (k)csymenc(N,k) send

different messages, but they should be treated as

equivalent when proving security

• In each case, a term is encrypted under a fresh key

• No test by the attacker can tell these apart

- -

Testing Equivalence

Informally, two processes are equivalent if no

environment can distinguish them

A test is a process R and channel name w

• Informally, R is the environment and w is the channel on
which the outcome of the test is announced

A process P passes a test (R,w) if P | R may produce an

output on channel w

• There is an interleaving of P and R that results in R being
able to perform the desired test

Two processes are equivalent if they pass the same

tests

Advantages and Disadvantages

Proving testing equivalence is hard

• Need to quantify over all possible attacker processes and all
tests they may perform

• There are some helpful proof techniques, but no fully
automated tools and very few decision procedures

Testing equivalence is a congruence

• Can compose protocols like building blocks

Equivalence is the “right” notion of security

• Direct connection with definitions of security in complexity-
theoretic cryptography

• Contrast this with invariant- and trace-based definitions

Bibliography

Robin Milner. “Communication and Concurrency”. Prentice-Hall, 1989.

• Calculus of communicating systems (CCS)

Robin Milner. “Communicating and Mobile Systems: the -Calculus”.

Cambridge University Press, 1999.

• Pi calculus

Martin Abadi and Andrew Gordon. “A calculus for cryptographic protocols:

the spi-calculus”. Information and Computation 148(1), 1999.

• Spi calculus

Martin Abadi and Cedric Fournet. “Mobile values, new names, and secure

communication”. POPL 2001.

• Applied pi calculus

Martin Abadi and Phillip Rogaway. “Reconciling two views of

cryptography”. Journal of Cryptology 15(2), 2002.

• On equivalence of complexity-theoretic and process-calculus models •FINE

