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Conclusions

Internet offers agent many identities 

• user, ip, mac, tcp port, ...  What is “A”, “ID_A”?

Many types of attackers (or channels)

• over the air, authentic channels, connection channels

• safer routes

Many types of DoS attacks

• flodding, bombing, starving, disrupting

Many types of properties 

• besides authentication and secrecy

• “Incomplete protocols” (need to add extra messages to prove 

authentication goals)

• key control, perferct forward secrecy, ...

• layered properties

–if attacker ... then ..., if attacker ... then ...



Internet

Protocols define 

Format and order of msgs sent 

and received among network 

entities, and 

actions taken on msg

transmission, receipt

• Examples: TCP, IP,

HTTP, FTP,PPP

Internet: “network of networks”

Standards

• RFC: Request for Comments

• IETF: Internet 

Engineering Task Force
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Protocol layering in Internet
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Internet Network Architecture

Internet

Internet/Web Applications
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Encapsulation

TCP segment 

IP datagramm 

Ethernet frame
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At which layer security?

Access Point
or Gateway
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Separation of Concerns

Most security protocols today are separated into two 

parts:

1) Authentication and key exchange protocols 

2) Protection of data traffic

Step (1) is usually the most difficult one. Sometimes 

this step is again separated into sub-steps for 

performance reasons. 



Internet protocol architecture
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Some protocols in the TCP/IP Suite

SMTP TelnetBGP FTP HTTP

TCP

IP

OSPF RSVPIGMP ICMP

SNMP

UDP

DIAMETER

SCTP

BGP = Border Gateway Protocol

DIAMETER = (2 x RADIUS) = New AAA Protoc

FTP = File Transfer Protocol

HTTP = Hypertext Transfer Protocol

ICMP = Internet Control Message Protocol

IGMP = Internet Group Management Protocol

IP = Internet Protocol

MIME = Multi-Purpose Internet Mail Extension

OSPF = Open Shortest Path First

RSVP = Resource ReSerVation Protocol

SMTP = Simple Mail Transfer Protocol

SNMP = Simple Network Management Protocol

TCP = Transmission Control Protocol

TCP = Transmission Control Protocol

UDP = User Datagram Protocol



Securing the Infrastructure

Applications need complex, reliable protocols 

for service discovery, session control, 

guaranteeing QoS, etc.

Network control mechanisms and routing 

protocols have minimal or no authentication 

at all

Infrastructure mechanisms often may not use 

IPSec or TLS to secure their operations



AAA Definitions

Authentication

Verifying an identity (distinguishing identifier) claimed 

by or for a system entity. This is done presenting 

authentication information (credentials) that 

corroborates the binding between the entity and the 

identifier. (2828)

Entity authentication 

Assuring one party (through acquisition evidence) of 

the identity of a second party involved in a protocol,

and that the second has actually participated (i.e., is 

active at, or immediately prior to, the time the 

evidence is acquired).



AAA Definitions

Message authentication 

A party is corroborated as the source of specified data 
created at some (typically unspecified) time in the 
past, and data integrity, but no uniqueness or 
timeliness guarantees.

Methods for providing data origin authentication include:

• 1. message authentication codes (MACs)

• 2. digital signature schemes

• 3. appending (prior to encryption) a secret authenticator 
value to encrypted text.

A difference btw. entity and msg authentication:

• message authentication provides no timeliness guarantee 

• entity authentication implies actual communications with 
verifier during execution of the protocol



AAA Definitions

Authorization

An "authorization" is a right or a permission granted to 
an entity to access a system resource. An
"authorization process" is a procedure for granting 
such rights. (2828) Here: Policy-based. Others: ACL, 
capability tokens.

Accounting

The collection of resource consumption data for the 
purposes of capacity and trend analysis, cost 
allocation, auditing, and billing.  Accounting 
management requires that resource consumption be  
measured, rated, assigned, and communicated 
between appropriate parties.



AAAA Definitions

Accountability

The property of a system (including all of its 

system resources) that ensures that the 

actions of a system entity may be traced 

uniquely to that entity, which can be held 

responsible for its actions. (2828)



Authentication

(Claimed-ID, Credential)

This makes no sense. 

Credentials belong to 

claimed-ID, so what?

(Probably I knew that before)

(Claimed-ID, Credential

[Port | IP-Address] )

This, alone, makes no sense.

Claimed-ID is now 

at port xyz,so what? 

In the next message?

( {Port | IP-Address | Claimed-ID} , 

Credential, {Req | Msg} )

This makes sense.

Claimed-ID is requesting this

or telling that.

In connectionless communication, entity authentication without a meaningful

message other than the claim of being a particular entity makes no sense.



Security Relations

(Claimed-ID, Credential, Req)
How can the router verify the

Credentials and check that

the Req is forn Claimed-ID?

The router has to know 

something special about the 

Claimed-ID: he has to have a 

Security Relation

(pre-established) or obtain one.

Examples: 

 Knowledge of the validity of a Public Key (Digital certificates, PKI)

 Shared secret (password, key) Note: in this case the SR is bidirectional



Authentication Credentials

Examples: 

• Digital certificates (PKI)

• f(secret key, time-stamp)

• rsp := f(secret key, chall), i.e.  responses to Challenges

(Claimed-ID , Credential, 

Req )

(Claimed-ID, Req )

(chall )

(resp)



Key Establishment

Protocol whereby a shared secret becomes available to 

two or more parties, for subsequent cryptographic use.

Subdivided into 

• key transport and 

• key agreement

Key transport: one party creates or otherwise obtains a 

secret value, and securely transfers it to the other(s).

Key agreement: a shared secret is derived by two (or 

more) parties as a function of information contributed

by, or associated with, each of these



Key Establishment

Authentication term Central focus

authentication depends on context of usage

entity authentication 
identity of a party, and aliveness at a given 

instant

data origin (=msg) 

authentication 
identity of the source of data (+integrity)

(implicit) key authentication 
identity of party which may possibly share a 

key

key confirmation 
evidence that a key is possessed by some 

party

explicit key authentication 
evidence an identified party possesses a 

given key



Key Agreement -- Properties

(Implicit) Key authentication:

• one party is assured that no other party aside from a 
specifically identified second party (and possibly additional 
identified trusted parties) may gain access to a particular 
secret key.

• independent of the actual possession of such key by the 
second party.

Key confirmation:

• One party is assured that a second (possibly unidentified) 
party actually has possession of a particular secret key.

Explicit key authentication: both 

• (implicit) key authentication and 

• key confirmation hold.



Key Agreement -- Properties

Authenticated key establishment

• key establishment protocol which provides key 
authentication.

Identity-based key establishment

• identity information (e.g., name and address, or 
an identifying index) of the party involved is 
used as the party’s public key. 

Identity-based authentication protocols may 

be defined similarly.



Session Keys

An ephemeral secret, i.e., restricted to a short time 

period, after which all trace of it is eliminated. 

Reasons:

1. to limit available ciphertext (under a fixed key) for 
cryptanalytic attack;

2. to limit exposure, with respect to both time period and 
quantity of data, in the event of (session) key 
compromise;

3. to avoid long-term storage of a large number of distinct 
secret keys (in the case where one terminal 
communicates with a large number of others), by 
creating keys only when actually required;

4. to create independence across communications sessions
or applications



Key Agreement -Classification

1. Nature of the authentication:

a. entity authentication, 

b. key authentication, and 

c. key confirmation.

2. Reciprocity of authentication. If provided, entity 

authentication, key authentication, and key 

confirmation may be unilateral or mutual 

3. Key freshness. A key is fresh (from the viewpoint of 

one party) if it can be guaranteed to be new, as 

opposed to possibly an old key being reused through 

actions of either an intruder or authorized party. This 

is related to key control



Key Agreement - Classification

4. Key control:

the key is derived from joint information, and neither 
party is able to control or predict the value of the key

5. Efficiency. 

(a) number of message exchanges
(b) bandwidth (total number of bits)

(c) complexity of computations

(d) precomputation to reduce on-line computational 
complexity



Key Agreement - Classification

6. Third party requirements

(a) on-line (real-time), 

(b) off-line, or 

(c) no third party;

(d) degree of trust required in third party (e.g., trusted to 
certify public keys vs. trusted not to disclose long-term 
secret keys).

7. Type of certificate used and manner by which initial 

keying material is distributed 

8. Non-repudiation

some type of receipt that keying material has been 

exchanged.



Perfect forward secrecy and known-key attacks

Perfect forward secrecy

• compromise of long-term keys does not compromise past 
session keys.

–Previous traffic is locked securely in the past. 

–It may be provided by a Diffie-Hellman procedure.

• If long-term secret keys are compromised, future sessions are
subject to impersonation by an active intruder

Immunity to known-key attack: When past session keys are 

compromised, do not allow 

• Passive attacker to compromise future session keys

• impersonation by an active attacker in the future

(Known-key attacks on key establishment protocols are analogous 
to known-plaintext attacks on encryption)



Many types of keys

Sealing key: a shared secret key used for computing 

cryptographic checkvalues (MACs)

Signature key: a private key used for signing,

Verification key: a public key used for checking 

signatures, or a secret key used for checking MACs

Encipherment key: either secret or public key, 

Decipherment key: either secret or private key.

Keys shold be used only for one purpose
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Management Problems: Passwords, Cards, 
Tokens

Passwords are 

• often shared

• guessable

• written down on pieces of paper

Smart cards and hand-held tokens are

• expensive

• People forget them

• Card readers draw too much power from hand-
helds



Management Problems: WLAN/WEP

WEP is optional, 

• many real installations never even turn on 
encryption

–irrelevant how good the cryptography is if it is never 
used. 

By default, WEP uses a single shared key for 

all users 

• often stored in software-accessible storage on 
each device

• If any device is stolen or compromised, change 
the shared secret in all of the remaining devices

• WEP does not include a key management 
protocol



Is PKI secure? More 
Management Problems

Most users don’t know what certificates are.

Most certificates’ real-world identities aren’t checked by 

users.

Meaningless Certificates: 

• Why should Dow, Jones own the www.wsj.com certificate?  

• Is that certificate good for interactive.wsj.com?

Is it NASA.COM or NASA.GOV?  

• MICROSOFT.COM or MICR0S0FT.COM?

• What about MICROSОFT.COM?  (Cyrillic “O”, do you see it?)

Effectively, we have no PKI for the Web.



DoS Attacks against Authentication Protocols

Flooding attacks: Spoofed messages cause target to 
perform expensive cryptographic operations:

Attacker gets the nodes to perform PK operations. It 
may spoof a large number of “signed messages” with 

random numbers instead of signatures

–Target will verify the signatures before rejecting the 
messages. 

–Symmetric encryption, hash functions and non-cryptographic 
computation are rarely the performance bottleneck (unless the 
cryptographic library is optimized only for bulk data)

If a node creates a state during protocol execution, the 
attacker may start an excessive number of protocol 
runs and never finish them

The stronger the authentication, the easier it may be for 
an attacker to use the protocol features to exhaust 
target’s resources.



SYN Flooding: Implementation Issues

Host accepts TCP open requests, from spoofed 

locations

Half-open connection queue fills up

Legitimate open requests are dropped

Implementation issues

Mostly solved:  

• use cheaper data structure for queue, 

• random drop when queue is full



Design Problems: WLAN/WEP

Internet

E(m)

E(m) D(E(m))

m

m



No perfect Security

Many different types of Attacks

Many different types of Security Mechanisms

• at different SW layers

• with different strength

Management, Implementation or Design Errors

• Design errors affect more people 

Some risks

• may be acceptable (low damage or very low risk) 

• too expensive to fully prevent



Authentication Levels

None (no authentication)

• SASL Anonymous [RFC2245]

• Authentication based on source IP address

• Diffie-Hellman

Weak (vulnerable against eavesdroppers)

• FTP USER/PASS

• POP3 USER/PASS

Limited (vulnerable against active attacks)

• One-time Passwords

• HTTP Digest Authentication

• IMAP/POP Challenge/Response

Strong (protection against active attacks)

• Kerberos

• SRP Telnet Authentication

• Public Key Authentication      



Variable Security

Different security mechanisms

• variable levels of guarantees 

• variable security properties 

• variable cost

Challenge:

• find an acceptable level of protection 

• at affordable price 

Find:

• most inexpensive security mechanisms 

–even if they are weak!

• that solve your problem



Attackers

Most are joy hackers.

Soon also Terrorists?

Spies? Governments? Industrial spies?

For profit?

Some businesses report targeted attempts:

• Vendor prices changed on a Web page

• ISP hacked by a competitor

• Customers on pay-per-packet nets targets of 
packet storms



Well known Attacks: DOS

Denial of Service Attacks 

Attacker doesn’t break in

• he denies you access to your own resources.

Many incidents reported, more are likely.

You lose:

• if it’s cheaper for the attacker to send a message

• than for you to process it

Denial of Service Attacks are hard to prevent

• in particular using security measures at higher layers only

Thumbrules:

• Try to be stateless – allocate resources as late as possible. 

• Do expensive computations as late as possible. 

• Move heavy computation to the initiator of the protocol run.



DOS Example: “Smurf” Attack

Attacker sends “ping” to intermediate 

network’s broadcast address.

Forged return address is target machine.

All machines on intermediate network receive 

the “ping”, and reply, clogging their 

outgoing net and the target’s incoming net.

Firewalls at target don’t help -- the line is 

clogged before it reaches there.



Well known Attacks: Sniffers

Password collection 

Credit card numbers

NFS file handle collection

DNS spoofing



Attacks to the infrastructure: Routing Attacks

Routers advertise 

• own local nets, 

• what they’ve learned from neighbors

Routers trust dishonest neighbors

Routers further away must believe everything 

they hear

First solutions in the literature



GSM Today

AV = (chall, resp, C),   C = Cipher Key

AV generation is not so fast => batch generation

MS is able to calculate:  C = Ck(chall)

Therefore MS and SN share C.

MS authenticates to SN, but SN does not 

authenticate to MS

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)

UAS(resp)

LUR



GSM Today: Problem

• If attacker gets hold of one (for instance, used) AV:

– he may create false base station SN’

– force MS to communicate to SN’ (using C)

– decipher/encipher

– use another (legal) user MS’ (with key C’)

• Possible:

– says(A,B,m)  /\ notes(C,A,m)  /\ C != B

– notes(A,B,m)  /\ says(B,A,m’)  /\ m != m’

MS’ SNMS SN’
C C’



UMTS: Idee

• MS is able to check that challenge is consistent: consk(chall)

• AVi also contain a sequence number, that may be 

reconstructed by the MS:  seq = seqk(chall)

• MS accepts AVi only if  

seqMS <  seqk(chall) < = seqMS + 

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)

UAS(resp)

LUR

SynchronFailure



UMTS: Idee

seqMS <  seqk(chall) < = seqMS + 

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)

UAS(resp)

LUR

SynchronFailure

Is there no MiM Attack?
Is there no deadlock?
Such design errors would be very expensive:

Replace firmware in many towers
and in millions of Cellular Phones
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Avispa

http://www.avispa-project.org

U. of Genova,  

LORIA-Lorraine,  

ETHZ, 

Siemens AG

Shared-cost RTD (FET Open) Project IST-

2001-39252

Started on Jan 1, 2003



PBK Construction

Alice sends m1, m2, …, mN, 

Bob is able to recognize they have same source

Alice constructs a public/private key pair PBK = (p,s)

Alice disclosed the public key p to Bob along with the initial 

packet

Bob verifies messages signed with the private key s=inv(p)

Bob knows the messages were sent by one node 

If replay protection: sequence number or timestamp

Is there a cheaper way?



Generalized PBK: Requirements

Bob receives m1, m2, …, mN, 

authentically generated by one source

If the first message  A  B arrives without modification, 

all other messages shall be protected in a way that B 

recognizes alteration

MiM attack in the first message: 

A  E  B :  B is receiving messages from E

But if first message is OK, the system should protect 

against MiM

DoS:  

If attacker can only insert messages: DoS resilience



1. Hash Construction

If Alice knows in advance which messages she wants to send:

m1, m2, …, mN:

{mi} := <mi , H(mi+1)>   (Send mi together with H(mi+1)).  

1. Quiz: OK?

No.  An attacker can replace {mi} := <mi , H(mi+1)>  

by  {mi} := <mi , H(i+1)> 

And then replace {mi+1} := <mi+1 , H(mi+2)>  by  

{i+1} := < i+1 , H(i+2)> etc.

{mi} := <mi , H(mi+1, mi+2, …, mN)>     2. Quiz: OK?

I think, yes, this seems easy to prove.



2. Hash Construction

Alice chooses a hash sequence: 

h1= H(h2)= H(H(h3))= Hi(hi+1) =.. = HN-1(hN):

{mi} := <mi , H(mi , hi)>   

What is wrong? (Too trivial for a quiz!)

Bob has no means to check HAshes.

{mi} := <mi , H(mi , hi), hi >      3. Quiz: OK?

No.  Attacker replaces {mi} := <mi , H(mi , hi), hi >  by  

< i , H(i , hi), hi > 



3. Hash Construction

Hash sequence: h1= H(h2)= H(H(h3)) =… = Hi(hi+1) =.. = HN-1(hN) 

{mi} := <mi , H(mi , hi), hi-1 >       

4. Quiz: OK?

No.  Attacker intercepts 2 consecutive messages

{mi}  :=  < mi , H(mi , hi), hi-1 >   {mi+1} := <mi+1 , H(mi+1 , hi), hi >  

replaces

{mi}  by  < i , H(i , hi), hi-1 > 

Idea: Alice waits for an Acknowledge {acki} := <H(mi , ĥi), ĥi >   

(Bob uses seq:  ĥ1= H(ĥ2)= H(H(ĥ3)) =… = Hi(ĥi+1) =.. = HN-1(ĥN)  )   

5. Quiz: OK?

I think, yes.  Is somebody sure?  What is not nice about the solution?

That B is forced to use a hash series, one for each peer. (DoS)



4. Hash Construction

Hash sequence: h1= H(h2)= H(H(h3)) =… = Hi(hi+1) =.. = HN-1(hN) 

{mi} := <mi , H(mi , hi), hi-1 >

Alice waits for an Acknowledge {acki} := <H(mi , ĥi), ĥi , H(ĥi+1)>  

6. Quiz: OK?

I think, yes.  Is somebody sure?

Another idea: instead of acknowledgments, use time frames. 

This will work for multimedia. Both A and B divide their time in 

intervals: A sends at the beginning of his intervals, B discards 

messages that arrive too late.

7. Quiz: Dos that work?

I think, yes.  Is somebody sure?



Motivation for the project

There are many techniques for the automatic analysis of 

security protocols,  BUT

• tools usually come with specific working assumptions 
(specification language, security Goals, modelling 
assumptions, bounds, . . . )

This makes it very difficult

• to use the tools productively (for the non-expert user) and

• to assess and compare the potential of the proposed 
techniques.



Objectives of the AVISPA Project

1. Build a open architecture supporting

a) design of security protocols using a comfortable notation and 
web-based user-friendly interface

b) seamless integration and systematic assessment of new 
automated techniques for the validation of security protocols.

2. Build and make publicly available a library of formalized 

IETF protocols and associated security problems.

3. Develop and tune three promising and complementary 

state-of-the-art technologies for automatic formal analysis:

a) On-the-fly Model-Checking

b) Constraint Theorem-Proving

c) SAT-based Model-Checking



Architecture of the AVISPA Tool

Open to other 

technologies

High-Level Protocol Specification Language

Intermediate Format

On-the-fly Model-Checker

CL-based Theorem-Prover

SAT-based Model-Checker



On-the-fly Model-Checking

Context: On-the-fly model checking supports the 

incremental exploration of very large or infinite state 

systems. Lazy evaluation in languages like Haskell 

provides a powerful platform for building flexible, 

efficient search engines.

Approach: Lazy evaluation is combined with symbolic

(unification-based) methods to build on demand, and 

explore, the protocol search space.

Advantages:

• Declarative specification of infinite data structures, 
reduction methods, and heuristics.

• Modular design, easy integration of 
heuristics/improvements.



Constraint Theorem-Proving

Context: Rewrite-based, first-order theorem provers have 

recently appeared as very effective tools for equational 

reasoning. daTac combines rewriting with constraints to 

handle properties such as associativity/commutativity.

Approach: Messages exchanges and intruder activities can 

be directly translated into rewrite rules. Searching for 

an attack amounts to deducing a contradiction.

Advantages:

• Protocol representation is simple and intuitive.

• Advancements in deduction can be easily incorporated.

• Fast prototyping of model enhancements (e.g. algebraic 
properties of operators).



SAT-based Model-Checking

Context: Dramatic speed-up of SAT solvers in the last 

decade:

• Problems with thousands of variables are now solved 

routinely in milliseconds.

Approach: Bounded model-checking of security protocols 

based on a constructive translation of the IF into SAT 

with iterative deepening on the number of steps.

Advantages:

• Most of the generated SAT instances are solved in 

milliseconds.

• Declarative.

• Plug and play integration of different SAT solvers 

• Improvements of SAT technology can be readily exploited.
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Internet History

1961: Kleinrock - queueing 

theory shows effectiveness 

of packet-switching

1964: Baran - packet-

switching in military nets

1967: ARPAnet conceived by 

Advanced Research 

Projects Agency

1969: first ARPAnet node 

operational

1972: 

• ARPAnet demonstrated 
publicly

• NCP (Network Control 
Protocol) first host-host 
protocol 

• first e-mail program

• ARPAnet has 15 nodes

1961-1972: Early packet-switching principles



Internet History

1970: ALOHAnet satellite 

network in Hawaii

1973: Metcalfe’s PhD thesis 

proposes Ethernet

1974: Cerf and Kahn -

architecture for 

interconnecting networks

late70’s: proprietary 

architectures: DECnet, SNA, 

XNA

late 70’s: switching fixed 

length packets (pre ATM)

1979: ARPAnet 200 nodes

Cerf and Kahn’s 

internetworking principles:

• minimalism, autonomy - no 
internal changes required to 
interconnect networks

• best effort service model

• stateless routers

• decentralized control

define today’s Internet 

architecture

1972-80: Internetworking, new and proprietary nets



Internet History

1983: deployment of TCP/IP

1982: SMTP e-mail 

1983: DNS name-to-IP-address 
translation

1985: FTP

1986, Jan: first IETF meeting 21 
attendees

1986, Oct: 4th IETF, first IETF 
with non-government vendors

1987, Feb: 5th IETF: Working 
Groups were introduced 

1987, Jul: 7th IETF, > 100 
attendees

1988: TCP congestion control

New national networks: Csnet, 
BITnet, NSFnet, Minitel

100,000 hosts connected to 
confederation of networks

1993 July: IETF met in 
Amsterdam, first IETF meeting 
in Europe

US/non-US attendee split was 
(+is) nearly 50/50.

1980-1990: new protocols, a proliferation of 
networks



Internet Organizations

ISOC (Internet Society)
political, social, technical aspects of the Internet

http://www.isoc.org/

IAB (Internet Architecture Board) 
oversight of Internet architecture and standards process;

liaisons with e.g. ITU-T, ISO
http://www.iab.org/iab/

IETF 

(Internet Engineering Task Force)
standardizes Internet protocols; 

open community for engineers, 

scientists, vendors, operators
http://www.ietf.org/

IRTF 

(Internet Research 

Task Force)
pre-standards R&D

http://www.irtf.org/



IETF

Proceedings of each IETF plenary

Meeting minutes,

working group charters (which include the working group 
mailing lists), 

are available on-line see www.ietf.org. 

• 3 meetings a year. 

– working group sessions, 

– technical presentations, 

– network status reports, 

– working group reporting, and 

– open IESG meeting. 



IETF Current Areas

Applications (APP) - Protocols seen by user programs, such as e-

mail and the Web 

Internet (INT) - Different ways of moving IP packets and DNS 

information 

Operations and Management (OPS) Administration and 

monitoring 

Routing (RTG) - Getting packets to their destinations 

Security (SEC) - Authentication and privacy 

Transport (TSV) - Special services for special packets 

User Services (USV) - Support for end users and user support 

organizations 

General (GEN) - Catch-all for WGs that don't fit in other areas 

(which is very few) 



IETF procedures

The IETF is a group of individual volunteers (~ 4 000 
woldwide)

Work is being done on mailing lists (plus 3 
meetings/year)

No formal membership, no formal delegates

Participation is free and open

>110 working groups with well defined tasks and 
milestones

Major US vendors dominate the IETF

IETF does not decide about the market, but:
the approval of the IETF is required for global market 
success.



Protocol design is done in working 
groups

Basic Principles

• Small focused efforts preferred to larger comprehensive ones

• Preference for a limited number of options

Charter

• Group created with a narrow focus

• Published Goals and milestones

• Mailing list and chairs' addresses

"Rough consensus (and running code!)"

• No formal voting (IESG decides)

• Disputes resolved by discussion and demonstration

• Mailing list and face-to-face meetings

Consensus made via e-mail

• (no "final" decisions made at meetings)



Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA, 

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana



Kerberos

An authentication 

system for 

distributed systems



Introduction

Based on Needham - Schroeder

Three-Party Protocol

Extensions according to Denning - Sacco. 

Developed at MIT as part of the project Athena

Versions 1 - 3 internal 

Currently the following Kerberos Version are published:

• Kerberos v4

• Kerberos v5

Kerberos v5 Clarifications/Revisions (not finished)



Three Party Protocols

Y. Ding and H. Petersen: "Eine Klassifikation von Authentifikationsmodellen", 
Proc. Trust Center'95, DuD Fachbeiträge, 292 - 302, 1995.

Nonce-based Protocol

Timestamp-based ProtocolKerberos



Kerberos in three Acts

AS+
KDC

SrvReq

({tt}k, {A,B,ttmax,k}B)
A B

AuthRsp({k}A, {A,B,ttmax,k}B)

AS+
KDC

SrvReq

( {k}B )

AReq(A,B)

A B

ARsp({k}A, {k}B)

({tt}k, {k}B)

• Drawback: User 

has to re-type 

password for every 

new service ticket 

request 

• Solution: Ticket 

Granting Ticket

AS TGS
KDC



Kerberos Single-Sign-On

Obtaining additional tickets

• Don't want to present user's password each time the user 
performs authentication with a new service

• Caching the user's password on the workstation is dangerous

• Cache only tickets and encryption keys (collectively called 
credentials) for a limited period, typically ~8 hours

When the user first logs in, an authentication request is issued 

and a ticket and session key for the ticket granting service 

is returned by the authentication server

A special ticket, called a ticket granting ticket,  is used to 

subsequently request a session key with a new verifier

The TGT may be cached



Complete Kerberos 

Protocol
< client communicate with AS to obtains a ticket for access to TGS >
1. Client requests AS of KDC to supply a ticket in order to 

communicate with TGS.
- request (C, TGS) C : client id

2. AS returns a ticket encrypted with TGS key(Kt) along with a session
key Kct.
- return = ( {ticket}Kt, {Kct}Kc Kct : TGS session key
- ticket = ( C, TGS, start-time, end-time, Kct )        Kc : client key

< client communicate with TGS to obtain a ticket for access to other server >
3. Client requests TGS of KDC to supply a ticket in order to communicate with order server.

- request  = ( {C, timestamp}Kct, {ticket}Kt, S ) S: server key
4. TGS checks the ticket, If it is valid TGS generate a new random session key Kcs.

TGS returns a ticket for S encrypted by Ks along with a session key Kcs.
- return = ( {ticket}Ks, {Kcs}Kct ) ticket = ( C, S, start-time, end-time, Kcs )

< client communicate with the server to access an application >
client decrypt {Kcs}Kct with Kct to get Kcs.
client generate authenticator A with the information from ticket. 
- A = ( {C, S, start-time, end-time, address}Kcs )

5 . Client sends the service request to the server along with the ticket and A.
- ( {ticket}Ks, {C, S, start-time, end-time, address}Kcs, request

6. The server decrypt ticket using Ks and check if C, S, start, end times are valid
If service request is valid, use Kcs in the ticket to decrypt authenticator
Server compares information in the ticket and in the authenticator. If agreement, the service 

request accepted.

AS TGS

Client Server

KDC

1
2

3

4

5

6

(from: B. C. Neuman + T. Ts’o: IEEE Communications Magazine SEP. 1994)



Kerberos Entities

Kerberos Key Distribution Center (KDC)  consists of 

• Kerberos Authentication Server (AS)

• Kerberos Ticket Granting Server (TGS)

• KDC supplies tickets and session keys

Realm

• Kerberos Administrative Domain that represents a group of 
principals 

• A single KDC may be responsible for one or more realms

Principal

• Name of a user or service

• Principal Identifier: Unique identity for a principal 
(service/host@realm_name)

• Example: krbtgt/SYSSEC.UNI-KLU@SYSSEC.UNI-KLU



The Kerberos Ticket

A Kerberos Ticket contains of two parts:

• Unencrypted part

• Encrypted part

Fields of the unencrypted part:

• Version number for the ticket format

• Realm that issued a ticket

• Server identity

Fields of the encrypted part:

• Flags     

• Key

• Client name/Client realm

• Transited 

• Start-time, End-time, Renew-till

• Host addresses and authorization data



Example: Service Ticket

Service Ticket is 

encrypted with the 

secret key of the 

service S. 

The ticket itself does 

not provide 

authentication. This 

is the responsibility 

of the 

Authenticator. 

Session

Key k(a,s)

User@Realm

Service Request for

Service S

Time

Stamp

Network

Address

Lifetime

Key(s)



Comparison Kerberos V4/V5 (1/3)

Limitations with V4 Improvements with V5

Weak Timestamp 
mechanism

Nonce-based replay protection with 
KRB_PRIV and KRB_SAFE. Replay 
protection for the client in the AS and 
TGS msgs.

No authentication 
forwarding

Right delegation via forwardable and 
proxiable tickets

Reuse of “session keys”
possible

No reuse possible, real session keys 
for KRB_PRIV and KRB_SAFE 
messages with sub-keys in AP_REQ

Flawed DES in cipher-block 
chaining mode

Standard DES in CBC mode

The AS and TGS response msgs are not double-encrypted in Krb V5 => U2U Auth.



Comparison Kerberos V4/V5 (2/3)

Limitations with V4 Improvements with V5

Limitations with principal 
naming

Less restrictions with a multi-component 

principal naming

Available for IP only Multi-protocol support introduced

Cross-realm authentication 

requires n*(n-1)/2 keys 

between communicating realms

Hierarchy of realms introduced.

Only DES encryption algorithm 

available (export restrictions)

Generic interface supports several 

algorithms, still limitations exist

Problems with the Kerberos V4 

pseudo-random number 

generator used for the session 

key generation (2^56 -> 

2^20)

Problems fixed in Kerberos V5 



Comparison Kerberos V4/V5 
(3/3)

Limitations with V4 Improvements with V5

Sender encodes messages 
in his native format.

Messages are described and encoded 

with the ASN.1 syntax.

No batch processing 

support for tickets 

available.

Batch processing available with the 

help of postdated tickets. 

Limited ticket 

lifetime(~21h)

Time format based on NTP -> very 

long lifetime

Weak message 

digest/checksum routines 

(CRC-32)

Several message digest routines 

available

No support for handheld 

authenticators (One-time 

Passwords)

Support added via the pre-

authentication data field

Limitations with V4

Improvements with V5



Kerberos V4 Cross-Realm Authentication

Ticket Flow

Client's Realm

Server's Realm

TGT

Request/

Reply

Client
Server

Service

Ticket

Request/

Reply

Service

Request/Reply

lKDC

rKDCCross-

Realm

 Ticket

Request/

Reply

R
e
p

ly
:

{T
ic

k
e
t}

k
(l

tg
s
)

R
e
p

ly
:

{T
ic

k
e
t}

k
(r

tg
s
)

Reply: {T
icket}k

(s)

inter-realm key

Request: {Ticket}k(s)



Kerberos V4 Cross-Realm

Realm navigation does 
not assume a realm-
structure. 

KDC must share a inter-
realm key with all 
neighboring realms it 
wants to communicate 
with.

Scalability problems due 
to the complex key 
distribution.

Realm A

Realm C

Realm D

Realm B

Inter-Realm Key

A-B, B-A

Inter-Realm Key          A-C, C-A

In
te

r-R
e
a
lm

 K
e
y

B
-C

, C
-B

In
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R
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a
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Kerberos V5 Cross-Realm Improvement

Hierarchical structure 

may be used.

Consulting a database 

is an alternative

The client and the 

KDC run the same 

algorithm to 

determine the 

authentication 

path. 

Short-cuts limit the 

number of 

requests. 

Realm

UNI-KLU

FINANZ.UNI-KLU SYSSEC.UNI-KLU

Realm Realm Realm

OEH.UNI-KLU

 STUDENT.SYSSEC.UNI-KLU STAFF.SYSSEC.UNI-KLU

Realm Realm

In
te

r-R
ealm

 K
ey

In
te

r-
R

e
a
lm

 K
e
y Inter-R

ealm
 K

ey

Inter-Realm KeyInter-Realm Key

Short-Cut
In

te
r-R

e
a
lm

 K
e
y



Kerberos V5 Cross-Realm Authentication

The sequence of realms used in the authentication process is 
referred as the authentication path. 

The client determines the authentication path by using a 
realm-naming convention similar to the DNS naming 
convention. The server runs the same algorithm but he may 
return a TGT that is closer to the final realm (if available). 

Example: 

• Client located at STUDENT.SYSSEC.UNI-KLU

• Server located at FINANZ.UNI-KLU

• Required TGTs:

–krbtgt/STUDENT.SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU

–krbtgt/SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU

–krbtgt/UNI-KLU@SYSSEC.UNI-KLU

–krbtgt/FINANZ.UNI-KLU@UNI-KLU

The transited path is the list of realms that were actually used 
to obtain the current ticket.  



Kerberos V5 Ticket Types

Initial Ticket

• Indicates that this ticket is the result of a initial authentication.

• Used for ticket issued by the KDC and not by the TGS.

• Required by some programs (e.g. password changing programs)

• Gives the assurance that the user has typed in his password 
recently.

Invalid Ticket

• Validated by the KDC in a TGS request. 

• Often used with postdated tickets

Postdated Ticket

• Purpose: Request a ticket for later use I.e. batch jobs

• Invalid until the start ticket has been reached

• Ticket must be sent to the KDC to convert it to a valid one.



Kerberos V5 Ticket Types

Renewable Ticket

• Used for batch jobs.

• Ticket has two expiration dates.

• Ticket must be sent to the KDC prior the first expiration to renew it. 

• The KDC checks a “hot list” and then sends a new ticket with a new 

session key back.

Proxiable Ticket

• Makes it possible for a server to act on behalf of the client to perform a 
specific operation. (e.g. print service)

• Purpose: granting limited rights only

Forwardable Ticket

• Similar to proxiable ticket but not bound to a specific operation

• Mechanism to delegate user identity to a different machine/service

• Sample application: telnet



Where is Kerberos used? 

Architecture:

PacketCable

Operating Systems:

Unix

Windows 2000 for all authentication procedures

Windows CE .NET

Protocols (examples):

Resource Reservation Protocol (RSVP)

Telnet; NFS; FTP; SNMP; TLS; KINK; DNS

APIs / Carriers for Authentication Protocols

GSS-API; SASL; EAP;



AAA (Diameter) for MobIP V4

HAFA

MN

Home DomainVisited Domain

AAA-H
AAA-V

1. Agent advertisement + Challenge

2. Registration Request 7. Registration Reply

3. AA-Mobile-Node-Request

4. Home-Agent-MobileIP-Request

5. Home-Agent-MobileIP-Answer

6. AA-Mobile-Node-Answer

8. Registration Request

9. Registration Reply

(8. + 9. Auth. with extensions:

MN-FA-, MN-HA-,FA-HA-Auth)

7‘. Now there are SA: 

MN-FA, MN-HA, FA-HA



What is IPSec?

IPSec is the standard suite of protocols for network-

layer confidentiality and authentication of IP packets. 

IPSec = AH + ESP + IPComp + IKE

In particular the following features are provided:

• Connectionless integrity

• Data origin authentication

• Replay Protection (window-based mechanism)

• Confidentiality

• Traffic flow confidentiality (limited)

An IPv6 standard compliant implementation must 

support IPsec.



Insecured Messages vs. Secured Messages

IP Spoofing

Session hijacking

Man-in-the-middle

Eavesdropping

Message modification

IPHdr Payload

IPHdr

Fields

Source

IPAdd

Dest

IPAdd

TCP

Hdr

Appl

Hdr

Appl

Payload

Tunnel mode:

the whole package is being 

encapsulated

in a new package

IPHdr Payload

Neuer

IPHdr

IPSec

Hd

IPHdr Payload IPSec

Trailerencrypted

Transport mode (less expensive)

new IPSec Header (+ evtl Trailer)

provides somewhat less security

IPSec

Hd

IPHdr IPSec

Trailer

Payload

encrypted



Use of IPSec: Tunnel Mode

Secured messages

in an insecure

environment

Neuer
IPHdr

IPSec
Hd

IPHdr Payload IPSec
Trailerencrypted

Insecured messages

in an secure

environment

IPHdr Payload

IPHdr Payload



Why IPSec?

Users want a secure, private network by

• disallowing communication to untrusted sites,

• encrypting packets that leave a site,

• authenticating packets that enter a site. 

By implementing security at the IP level, all distributed applications can 

be secured (including many security-ignorant, legacy applications). 

Typically, the following threats are prevented:

• Impersonation (IP Spoofing);

• Session hijacking;

• Man-in-the-middle Attacks;

• Injecting or re-ordering of IP packets

• Eavesdropping;

• Message modification



Tunnel Mode

Tunnel Mode

Tunnel mode has an 

“outer IP header” and 

“inner IP header”

• AH protects part of 

the outer header as well

Authentication is between remote 

host and firewall (or Security 

Gateway), or between two 

firewalls

User has access to entire internal 

network (VPN)

IPHdr Payload

Neuer

IPHdr

IPSec

Hd

IPHdr Payload IPSec

Trailerencrypted

Firewall / 

Security Gateway

Corporate 

Network

Roaming 

User

Internet

Site A Site B

Internet

IPsec Tunnel

IPsec Tunnel



Transport vs. Tunnel Mode

Transport Mode

no additional header to the IP 

packet. 

Authentication Header (AH) offers 

no confidentiality protection 

but protects parts of the IP 

header. 

Encapsulating Security Payload 

(ESP) provides confidentiality 

protection.

Transport mode must be host to 

host

• adequate for upper layer 

protocols

• Gateways cannot handle 

fragmentation or multiple routes 

Hosts share a secret key

IPSec

Hd

IPHdr IPSec

Trailer

Payload

encrypted



IPSec SA

A Security Association (SA) is a data structure. The SA 

provides the necessary parameters to secure data. SAs can 

be established manually or dynamically (e.g. IKE). 

An IPsec SA is uniquely identified by: 

• Security Parameter Index, SPI (32 bit)

• Destination IP Address

• Protocol (AH or ESP)

IPsec SAs can support:

• Transport mode

• Tunnel mode



How to establish IPSec Security 
Associations?

Default Key Management Protocol: 

The Internet Key Exchange Protocol (IKE)

Alternatives: 

• Kerberized Internet Negotiation of Keys (KINK) 
(see http://www.ietf.org/html.charters/kink-
charter.html)

• IKEv2 (SON-of-IKE)

• Host Identity Payload (HIP)
(http://homebase.htt-consult.com/HIP.html;
http://homebase.htt-consult.com/draft-moskowitz-hip-05.txt)

–HIP adds new namespace and provides a protocol for 
IPsec ESP SA establishment – not fully conformant to IPsec



Internet Key Exchange (IKE)

ISAKMP Phases and Oakley Modes

• Phase 1 establishes an ISAKMP SA

–Main Mode or Aggressive Mode

• Phase 2 uses the ISAKMP SA to 
establish other SAs 

–Quick Mode

–New Group Mode

Authentication with 

• Signatures

• Public key encryption

–Two versions

–Based on ability to decrypt, extract a 
nonce, and compute a hash 

• Pre-shared keys

Four of the five Oakley groups

AggressiveMain

New Group

Quick

No SA

Ph 1

Ph 2

IKE states (simplified)

modes and phases



Diffie-Hellman

k = Yx mod p = (gx)y mod p = (gy)x mod p = Xy mod p =k

The parameters g and p are typically known to all communication partners.

choose g,p
generate x
compute 

X=gx mod p

X [,g,p]

generate y
compute 
Y=gy mod p

Y

A B



Denial of Service (Flodding) 

choose g,p

generate 

random numbers:

Xi , i =1.. n
Xi [,g,p]

generate yi
compute Yi = gyi (p)

Yi

A B

DOS:

•Exponentiation: computationally expensive 

•B: Memory allocation

•A: IP spoofing to prevent traceability.



Dos Protection (Cookies)

X=gx mod p CA, CB,  X [,g,p]

Y=gy mod p
CA, CB,  Y

A B
choose CA

CA

choose CB

CB

Return routability proof: 

A has to have seen CB to send the next msg

If A spoofs  Addi  it has to sit on path  Addi  --B

Close to  Addi  : not many active addresses

Close to  B



IKE: Cookies

If A uses repeatedly same Address: 

Same cookie: B discards

Different cookies: A must wait

Problem remains: 

Unauthenticated key-exchange: 

man-in-the-middle

X=gx mod p CA, CB,  X [,g,p]

Y=gy mod p
CA, CB,  Y

A B
choose CA

CA

choose CB

CB



Authenticated Key Exchange

A B

Y=gy mod p
CA, CB,  Y

X=gx mod p CA, CB,  X [,g,p]

choose CA

CA

choose CB

CB

CA, CB,  {IDA, …}PSKey,k

CA, CB,  {IDB, …}PSKey,k

If A and B share a key PSKey then they may use it, together with k 
(the D-H result) to encrypt and authenticate the ID (and other param).



Main Mode for shared key: Negotiation, 
Key Derivation

A B

CA, CB,  X [,g,p], NA

CA, ISAA

CA, CB,  Y, NB

CB, ISAB

CA, CB, {IDA}PSKey,k

CA, CB, {IDB}PSKey,k

SKey = hPSKey( NA | NB)

{IDA}PSKey,k = ( IDA | HashA )

ISAA, ISAB are ISAKMP SA Data, used by IKE to negotiate:

encryption algorithm

hash algorithm

authentication method
The negotiated parameters pertain only to the ISAKMP SA 

and not to any SA that ISAKMP may be negotiating 

on behalf of other services.

SKeyd = hSKey( k | CA | CB | 0 )

SKeye = hSKey( SKeyd | k | CA | CB | 2 )

SKeya = hSKey( SKeyd | k | CA | CB | 1 )

HashA = hSKeya
( X | Y | CA | CB |  ISAA | IDA )



IKE (5): Key Derivation

Properties:
•IKE uses a key derivation procedure without a hierarchy. 
•Key derivation provides key material of arbitrary length for the individual keys
(encryption keys, integrity keys, IVs, etc. for different directions).

•The same key derivation routine is used to create an ISAKMP and an IPsec SA. 

PRF
Parameters

Layer 0

T1 T2 Tn

T1 T2 Tn|| || ||...Derived Key DK :=

KeyKeyKey

PRFPRF



Internet Key Exchange (IKE) Summary 
(1/2)

Phase I

• The two peers establish a secure channel for 
further communication by negotiating ISAKMP 
SAs.

Phase II

• Protected by the SA negotiated in Phase I, the 
peers negotiate SAs that can be used to protect 
real communication; that is, the IPsec SA.



Internet Key Exchange (IKE) Summary 
(2/2)

IKE defines two Phase I modes:

• MAIN MODE gives authenticated key exchange with identity 
protection.

• AGRESSIVE MODE gives quicker authenticated key exchange 
without identity protection.

For Phase I, IKE defines (for main and aggressive modes) four 

different authentication methods:

• 1. authentication with digital signatures;

• 2. authentication with public key encryption;

• 3. authentication with a revised mode of public key encryption; 
and

• 4. authentication with a pre-shared key.



IKEv2 – What’s new? (1/2)

Number of authentication modes reduced : Only one 

public key based and a pre-shared secret based 

method

Establishes two types of SAs (IKE-SA and Child-SAs)

User identity confidentiality supported 

• Active protection for responder

• Passive protection for initiator

Number of roundtrips are reduced (piggy-packing SA 

establishing during initial IKE exchange)

Better (optional) DoS protection

NAT handling covered in the core document 



IKEv2 – What’s new? (2/2)

Legacy authentication and IPSRA results have been 

added to the core document. 

This allows OTP and other password based 

authentication mechanisms to be used

To support legacy authentication a two-step 

authentication procedure is used.

Traffic Selector negotiation improved

IPComp still supported

Configuration exchange included which allows clients to 

learn configuration parameters similar to those 

provided by DHCP.

EC-groups supported



IPsec: Firewall to Firewall

Implement VPNs over the Internet.

Deployment already in progress; may some day 

largely replace private lines.

Caution:  still vulnerable to denial of service 

attacks.



IPsec:  Host to Firewall

Primary use:  telecommuters dialing in.

Also usable for joint venture partners, clients, 

customers, etc.

But today’s firewalls grant permissions based 

on IP addresses; they should use certificate 

names.



IPsec: Host to Host

Can we manage that many certificates?

Can servers afford it?

Can today’s hosts protect their keys?



Limits to IPsec

Encryption is not authentication; we must still control 

access.

• Firewalls can’t peek inside encrypted packets

Traffic engineers want to look inside packets, too.

New techniques for handling unusual links -- satellite 

hops, wireless LANs, constant bit rate ATM, etc. --

require examining, replaying, and tinkering with 

packets.

NAT boxes incompatible with end-to-end IPsec.

Use key recovery technology?



IPsec: IP security

Issues for IKE update (only minor corrections): 

• NAT/Firewall traversal

• SCTP

Proposals for IKEv2 features/simplifications (new version):

• remote access

• dead-peer detection

• client puzzles for DoS protection

• remove most of the authentication methods

• remove perfect forward secrecy

• only one phase

• backwards compatibility

• …

Much discussion and several sets of proposals related to 

IKEv2



Network Access Example

NAS

Password =? Pwd(ID)
Auth-Ack / Auth-Nak

User

Generate random
Challenge

PAP

CHAP

(ID, response) response = h(Challenge, Pwd(ID)
Auth-Ack / Auth-Nak

Authenticate-Request
(ID, Password)

User

Server

Random number

Shared 
secret

Shared 
secret

h h

=?

Challenge

Response



Wireless Environments

Traditional network access procedures are not 

well suited for wireless environments.

Hence wireless network have to use different 

mechanism.

What about the security of IEEE 802.11?



IEEE 802.11 Background

WEP (Wired Equivalent Privacy) 

• Goal was: protection equivalent to the protection granted by wired LAN

• Secret key is shared between AP and all stations (40 or 104 Bit)

• Authentication based on Chall/Resp, but not mandatory

• No key distribution mechanisms

• WEP was developed behind closed doors 

–as opposed to widespread practice today

Link layer security

• WEP key consists of Initialisation Vector (IV) concatenated with shared 
key 

• IV is 24 Bit long, no rules about usage

• Encryption is based on RC4  (a stream cipher)

–Generates an "endless" key stream 

–Key stream is bit-wise XORed with plaintext

–General Rule: never use key stream twice, but: 24 Bit revolves 
quickly



Wireless Equivalence Privacy (WEP) 
Authentication

Challenge 
(Nonce)

Response (Nonce RC4 encrypted 
under shared key)

MN AP
Shared secret distributed out of 

band

Decrypted nonce OK?

802.11 Authentication Summary:

• Authentication key distributed out-of-band

• Access Point generates a “randomly generated” challenge

• Station encrypts challenge using pre-shared secret



WEP Encryption

Secret Key

Initialization 

Vector (IV)

Plaintext PDU 

Data

seed
| |

Key Sequence

CRC-32

Integrity Check 

Value (ICV) 

RC4 
PRNG

| | 

Ciphertext

IV

Message





WEP in brief:

Sender and receiver share a secret 

key k.

Recipient:

Use the transmitted iv and k to generate K = rc4(iv,k)

<m',c'> := C  K =ifOK= (M  K)  K = M 

 If c' = c(m'), accept m' as the message transmitted

m

To transmit m:

c(m)

Compute a checksum c(m), append to m:

M = ( m | c(m) ) 

K  (keystream)

Pick iv, and generate a keystream 

K := rc4(iv,k)
iv C  (ciphertext)

ciphertext = C := M  K 

Transmit  (iv | ciphertext )



Attacks involving keystream reuse 
(collision)

If m1 and m2 are both encrypted with K, 

 C1  C2 = m1  K  m2  K 
= m1  m2

 intruder knows  of two plaintexts!

Pattern recognition methods: 
know m1  m2  recover m1, m2.

K = rc4(iv,k).

k changes rarely and shared by all users

Same iv  same K  collision

iv cleartext  intruder can tell when collision happens.

There are 2^24, (16 million) possible values of iv.

50% chance of collision after only 4823 packets!

Cards reset iv to 0 on each activation (then iv++): low iv 
values get reused often

m c(m)

K  (keystream)

iv C  (ciphertext)



Decryption Dictionaries

pings, mail  intruder knows one pair ciphertext and the 

plaintext for some iv.

C := M  K  he knows K = M  C .

Note that he does not learn the value of the shared secret k.

He stores (iv, K) in a table (dictionary).

This table is 1500 * 2^24 bytes = 24 GB

The next time he sees a packet with iv in the table, he 

can just look up the K and calculate M = C  K

size of the table depends only on the number of different 

iv you see.

It doesn't matter if you're using 40-bit keys or 104-bit 

keys

If the cards reset iv to 0, the dictionary will be small!



Message “Authentication” in WEP

The checksum algorithm used is CRC-32

CRC's detect random errors; useless against 

malicious errors:

•It is independent of k and iv

•It is linear: c(m  D) = c(m)  c(D)



Message Modification

Assume IV and C are known to intruder .

Intruder  wants the

receiver to accept fake message 

F = m  d

for some chosen d 

($$ in a funds transfer)

D := ( d | c(d) ), then (C  D) = K   (M  D)

C' := C  D transmit (iv,C') to the receiver.  

Receiver checks:

C'  K  = C  D  K  = M  D  = <F, c(F)>

OK!

m c(m)

K  (keystream)

iv C  (ciphertext)



Message Injection

Assume: Intruder  

knows a plaintext, 

and corresponding encryption 

(pings or spam provide this)

The encrypted packet is (iv,C), 

plaintext is ( m | c(m) ), 

intruder computes 

K  = C  ( m | c(m) ).

Now he can take any message F, compute c(F), and 

compute 

C' = <F,c(F)>  K .

Transmits (iv,C').

m c(m)

K  (keystream)

iv C  (ciphertext)



Message Injection

Note that we only used that the CRC does not 

depend on the key.  The attack would work 

just as well if the CRC were replaced by, say, 

SHA-1.



The Authentication Protocol

AP sends challenge

The client sends back the challenge, WEP-

encrypted with the shared secret k

AP  checks if the challenge is correctly 

encrypted

Intruder: has now both the plaintext and the 

ciphertext of this challenge!



Authentication Spoofing

Once intruder  sees a 

challenge/response pair for a 

given key k, he can extract iv and K .

Now he connects to the 

network himself:

• AP  sends 
a challenge m' to intruder 

• Intruder  replies with iv, <m',c(m')>  K 

• This is in fact the correct response, so AP  accepts intruder 

• Without knowing k

m c(m)

K  (keystream)

iv C  (ciphertext)



Message Decryption

Intruder  can trick AP  into decrypting the packet, and 

telling him the result :

Double-encryption

IP Redirection

Reaction attacks

m c(m)

K  (keystream)

iv C  (ciphertext)



Reaction Attacks

Assume the packet to be decrypted is a TCP packet 

Do not need connection to the Internet

Use the fact: TCP checksum invalid => silently dropped

But if the TCP checksum on the modified packet is 

correct, ACK 

We can iteratively modify a packet and check if the TCP 

checksum valid

Possible to make the TCP checksum valid or invalid 

exactly when any given bit of the plaintext message is 

0 or 1

So each time we check the reaction of the recipient to a 

modified packet, we learn one more bit of the plaintext



Attacking the WEP Algorithm

Passive attacks

• Eavesdropping packets with same IV  yields XOR of two (or 
more) plaintexts and allows conclusions about plaintext

• Eavesdropping packets with "special IVs"  allows to reconstruct 
the WEP key (=> Airsnort attack)

Active attacks

• Injecting know plaintext packets from the Internet 
(packet sent with selected IV for a known key stream) 

–Allows to decrypt all packets with same IV

–Allows to encrypt own plaintext with same IV

–Allows to built a lookup table for many (all) IVs (space required for all 
IVs ~15GB)

• Authentication possible without knowledge of the key
(Known plaintext attack - challenge / response)



IEEE 802.11 Security weaknesses

The properties provided by IEEE 802.11 do not meet today’s 

security objectives

The missing user identification and the non-existing 

appropriate key management makes it difficult to detect 

unusual activity.

Authentication is based on the MAC address and not on the user 

identity. 

Mutual authentication not provided (false base-station attacks 

possible)

No keyed message digest used

40-bit RC4 key length too short for today's application (because 

of US export restriction)

Too short Initialization Vector (24 bits)

Known (and partially known) plain-text attacks possible



Current Status of WLAN Security

802.11 Task Group i deals with enhanced security for 802.11 WLANs 

Standard expected for end 2003

Short-term solution: TKIP (Temporal Key Integrity Protocol)

• Idea: reuse existing hardware by software-/firmware-update only

• 128 bit key, 48 bit Extended IV, IV sequencing rules (~10^10 years)

• Key mixing function (creates new seed for RC4 for each packet)

• New Message Integrity Code

Authentication and key management: 802.1X "Port-based access 

control"

• Mutual authentication between STA and backend authentication server

• Establishment of individual per-session keys between STA and AP

Long-term solution: AES-CCMP (AES-Counter-Mode/CBC-MAC protocol) 

• Robust security solution

• Requires new hardware



WEP Security: Lessons

WEP designers selected well-regarded 

algorithms, such as RC4

But used them in insecure ways

The lesson is that security protocol design is 

very difficult

• best performed with an abundance of caution, 

• supported by experienced cryptographers and 

security protocol designers

• and tools!



IEEE 802.1X Security Properties

Support flexible security framework based on EAP (RFC 

2284) and RADIUS

Enable plug-in of new authentication, key management 

methods without changing NIC or Access Point

Enables customers to choose their own security solution

Can implement the latest, most sophisticated 

authentication and key management techniques with 

modest hardware

Enables rapid response to security issues

Per-session key distribution



IEEE 802.1X Security Properties

Enables use of Kerberos v5 for authentication

Allows fine-grain authorization:

• Authorization can include bandwidth limits, 
Virtual LAN, QoS, etc.

User-based identification

• Identification based on NAI (Network Access 
Identifier, RFC 2486) 

• Allows cross-realm access in public places 

Receives wide support in the industry

• 3Com, Intel, HP, MERIT, Microsoft, Nortel, Cisco



EAP Architecture

The Extensible Authentication Protocol

PPP 802.
*

SIP / HTTP

ICMP

TLS OTP GSS-API SRP
UMTS
AKA

Kerberos V5 IAKERB, SPNEGO, SPKM, SRPGM, …

Link Layer

Radius/ 
Diameter

UDP
Transport Layer

Application Layer



IEEE 802.1X EAP/Radius Conversation

EAPOL-Start

EAP-Response/Identity

Radius-Access-Challenge

EAP-Response

Access blocked
Port connect

Radius-Access-Accept

EAP-Request/Identity

EAP-Request

EAP-Success

Radius-Access-Request

Radius-Access-Request

RADIUSEAPOL



Purpose of Digital Certificates

Scalability

Trusted validation of parties

Transmission and storage of public keys can 

be insecure

Can provide permissions (Authorizations)

X.509 is part of the ITU-T Directory series of 

recommendations (= ISO/IEC 9594).



The minimal Public Key Certificate

A data structure that binds

a subject

a public key

PKCertificate :: =  

{

Subject Name
Subject Public Key

---------------------------

Signature

}

Binding done by trusted CA:

verifies the subject’s 

identity

signs the certificate



X.509  Public Key Cert V.1

PKCertificate :: =  

{

Version = 0 (“1”)

Serial Number

Signature AlgorithmID

Issuer

Validity (Lifetime)

Not Before

Not After

Subject Name

Subject Public Key

AlgorithmID

Key value

---------------------------

Signature

}

AlgorithmID is a pair: 

encrypt + hash (+ opt. parameters)

Version 1 from 1988

To uniquely identify cert. Never reused

X.500 DN of CA, e.g., {C=de, S=.., 

O=Comp}
YYMMDD; HHMM{SS}:  “Y2K problem”

Format of certificate is ASN.1

DER (Direct Encoding Rules) produces octets for transmission



(Single) Certificate Validation

Check the Certificate Integrity

Validity Period

Key Usage and Applicability according to 

policies

Certificate Status



How do I Verify this Certificate?

Alice wants me to believe that she owns 

a certain public key PK.

Issuer Subject NameSubject PubKey Signature

AliceCA1 of CA1PK

For that, she presents me a Certificate, 

issued by her company “CA1”.

But who is that company, “CA1”?
Is CA1 trustworthy?

Is “Signature of CA1” really the signature 

of CA1?



Path Construction and Path Discovery

Issuer Subject Name Subject PubKey Signature

AliceCA1 of CA1

Issuer Subject Name Subject PubKey Signature

CA1CA2 of CA2

Issuer Subject Name Subject PubKey Signature

CA2
CAT of CAT

Issuer Subject Name Subject PubKey Signature

CATCAT of CAT

Easy, in hierarchical PKIs, If not: may need construct several paths



CA Hierarchy and Cross-Certification

Cross Certificate

Alice

Certificate Authority

Certificate User

Certificate CA

CACACA

CA CA

CACA



Verify the Certificate: Path Validation

Issuer Subject Name Subject PubKey Signature

AliceCA1 of CA1

Issuer Subject Name Subject PubKey Signature

CA1CA2 of CA2

Issuer Subject Name Subject PubKey Signature

CA2
CAT of CAT

CATCAT of CAT

Issuer Subject Name Subject PubKey Signature

Relying on a trusted/local copy of the root certificate:

prove by induction : Issuer owns the claimed PubKey, 

CA2 , CA1 trustworthy.

Check Lifetime, Policies and Revocation Lists



X.509  Public Key Cert V.2

PKCertificate :: =  

{

Version = 1
Serial Number

Signature AlgorithmID

Issuer

Validity (Lifetime)

Not Before

Not After

Subject Name

Subject Public Key

AlgorithmID

Key value

Issuer Unique ID

Subject Unique ID

----------------------

Signature

}

Version 2 from 1992

To uniquely identify Issuer

To uniquely identify Subject

There may be several “Trustme-Cert 

Inc.” worldwide,

or several “Bob Hope” in our company

If “Bob Hope” leaves our company and a 

new “Bob Hope” is hired,

how to make sure that the new one does 

not inherit the old authorizations?

Nobody uses that. There are better solutions.



X.509  Public Key Cert V.3

PKCertificate :: =  

{
Version = 2
Serial Number
Signature AlgorithmID
Issuer

Validity (Lifetime)
Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Extensions
Extension1

Extension2

--------------------
Signature

}

Version 3 from 1998

UCTTime: YYMMDD:  If YY < 50 then add 

2000

else add 1900

OR

Generalized Time: YYYYMMDD

Standard extensions for: KeyID,

Key usage intention / restriction,

subject/issuer alternate names or 

attributes
(DNS name, email addr., URL, IP addr.)

policies

certification path

Private Extensions also possible



Key Usage

KeyUsage ::= BIT STRING {

digitalSignature        (0),

nonRepudiation          (1),

keyEncipherment         (2),

dataEncipherment        (3),

keyAgreement            (4),

keyCertSign             (5),

cRLSign                 (6),

encipherOnly            (7),

decipherOnly            (8) }



X.509  Public Key Certificate V.3

PKCertificate :: =  

{
Version = 2 (“3”)
Serial Number
Signature AlgorithmID
Issuer

Validity (Lifetime)
Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Extensions
Extension1

Extension2

------------------
Signature

}

Fields:  Type

(critical | non critical)

value

Issuer does not only check your identity,

it also checks what you are allowed

Size of cert (say, in wireless applications)

Do not need all extensions always

More extensions => faster to revocate

Problems:



X.509  Attribute Cert V.1 (current)

AttrCertificate :: =  

{

Version = 0 (“1”)
Serial Number
Signature AlgoID
Issuer + IssuerID
Validity (Lifetime)
Subject 

Subject Name
or
Base Certificate

Issuer
Serial Nr.

Attributes
Extensions
---------------------------
Signature

}

No field for a public Key

May have different CA from PKCert

different lifetime (shorter)

authorization information

role, etc.

Not (yet?) in wide use

Generalized Time: YYYYMMDD



Other Extensions  

Basic constraints

• Identifies whether the certificate subject is a CA;

• how deep a certification path may exist through 
that CA.

Name constraints (only for CA certificates) 

• Indicates name space within which all subject 
names in subsequent certificates in a 
certification path must be located. 



Certificate management

Certificate management covers:

• the responsibilities and actions of the Certification Authority,

• the ‘certification process’,

• distribution and use of certificates,

• certification paths,

• certificate revocation.

Two parallel sets of standards cover interactions between 

users and a CA:

• IETF RFCs 2510/2511 

• ISO/IEC 15945.

IETF leads the way - ISO/IEC has adopted proposals of RFCs.



The Certification Authority

The CA is responsible for:

• identifying entities before certificate generation

• ensuring the quality of its own key pair,

• keeping its private key secret.

The CA, before generating a certificate, checks that a 

user

• knows the corresponding private key to its claimed public 
key.

On keeping those commitments depends the notion of 

trust



What is an End Entity?

X.509v3 certificates are used by protocols such as 
S/MIME, TLS and IKE, when authentication requires 
public keys.
(End Entity = Natural Person) 

When two routers or security gateways or servers, etc.
wish to communicate, they exchange certificates to 
prove their identity

• thus removing the need to manually exchange public keys 
or shared keys with each peer 

• End Entity = Router, Printer, Gateway, Server, Device

• The certificate provides the equivalent of a digital ID card 
to each device. 



Basic model: basic protocols  --
Simplified User‘s View

certification
revocation 

request

"out-of-band„
publication

"out-of-
band„
loading

cert. 
publish

CRL
publish

ID: 12 34 56 78Company XYZ

Name 
ABCDEFG

Smart card
stores keys Certification

Authority

Directory server
stores public keys as

X.509 certificates

Certification
Authority

Registration
Authority

cross-certification

cross-certificate
update

initial registration
certification

key pair recovery
certificate update
key
enrolment

key
enrolment



Recall: Purpose of Digital Certificates

Scalability: get public keys only when really needed

Trusted validation of parties: by induction, I believe 

party is who he claims to be (erroneously: "trust is 

transitive")

Transmission and storage of public keys can be 

insecure:

replace storing securely many keys with:

• store insecurely many certificates

• store securely the root certificate

• store securely the private key

Can provide permissions (Authorizations): later



Basic model: basic protocols  --
Simplified User‘s View

ID: 12 34 56 78Company XYZ

Name 
ABCDEFG

Secured applications client e.g.
 Encrypted e-mail
 Encrypted web-access
 E-commerce using certificates
 VPN authentication using certificates

Secured application servers, e.g.
 Encrypted e-mail
 Encrypted web-access
 E-commerce using certificates
 VPN authentication using certificates

Need all: 

Secure

networks, 

services,

applications, and

devices



Reasons for Revocation

Compromise of subject’s private key

Change in subject name

Change in Authorizations in Cert

Change of subject’s affiliation

Violation of CAs policies

Compromise of CAs private key

Termination of entity, etc.

Need to inform all users by some 

means.

Note: Revocation before expiry!



Certificate Revocation List, Version 2 
(current)

CRL :: =  

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer 
Date (+Time)
NextUpdate (Time)
Revoked Certificates 

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions
---------------------------
Signature

}Stored on CA,

directory service or

OSCP (Online Cert Status Prot) server

Time-stamped 

and frequently updated

Rate may vary according to security 

of the transaction  (say, 4 times a day)

Must be scheduled regardless of 

change in status

Signed by CA

• List of revoked 
certificate’s serial 

numbers



Distribution of CRLs

Push
Broadcast

Reliable transport

Bandwidth Intensive

Who needs them?

CRL :: =  

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer 
Date (+Time)
NextUpdate (Time)
Revoked Certificates 

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions
---------------------------
Signature

}

On-line status checking
Client initiated

On-line query

Info available 24 x 7

CRL :: =  

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer 
Date (+Time)
NextUpdate (Time)
Revoked Certificates 

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions
---------------------------
Signature

}

?

CRL :: =  

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer 
Date (+Time)
NextUpdate (Time)
Revoked Certificates 

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions
---------------------------
Signature

}

Polling
Client polls according to 

advertised interval

CA or directory server can be 

polled

Black hole between revocation 

and next scheduled update



Problems

PDAs, Cellular Phones, Laptops:

• Intermittent Network Access

• Low communication Bandwidth

• Low Computational Power

Ideally:

• Connect for a short time, download messages, SW, etc

• Validate Certificates

• Proceed with off-line operations

• But:

• Need Public Keys

• Path Discovery, Verification



How to check revocation status?

Options from PKIX

• OCSP (Online certificate status protocol)

• OCSP with extensions:

– Delegated Path Validation (DPV) 

– Delegated Path Discovery (DPD)

• DPD or DPV are also possible without OCSP

• Simple Certificate Verification Protocol (SCVP)



Online certificate status protocol

OCSP, RFC 2560, enables certificate status to be queried. 

• The protocol specifies data exchanged between entity checking 
certificate status and the T3P providing that status.

OCSP may provide more timely revocation information than is 
possible with CRLs.

Entity issues status request to T3P and suspends acceptance 
of certificate until T3P gives response. (Some seconds, not 
real-time)

Client sends list of cert ids to a responder

Responder returns status for each:

• Good  (simply  means that responder has no record of the cert’s 
revocation)

• Revoked

• Unknown (responder has no knowledge of the cert)

(Version 2 fixes the way cert ids are sent)



DPD: Delegated Path Discovery

For clients that don’t want to do build a complete cert chain

• Memory or bandwidth constraints

Client request parameters:

• On the path construction

–Trust anchors

–Name constraints

–Name forms

• Validation Parameters

–Type of revocation status info (CRL or OCSP)

Responder builds a chain for the client:

• Client sends cert id

• Responder builds and returns chain - does not validate

Why DPD but no DPV? Client does not trust the responder



DPV: Delegated Path Validation

For clients that don’t want to do validate a 

complete cert chain

• CPU, memory or bandwidth constraints

• Central policy management

Responder builds chain (but does not return) 

and gives status of cert sent as for OCSP

Client can specify trust points through which 

chain must be built

Client completely trusts the responder, but

• Can use signed response for non-revocation

Issue: trust delegation



SCVP

The amount that the responder does can be varied

• Client can offload all processing to the SCVP server 

• Client can just use SCVP for chain building

Client sends up complete certs and what it expects:

• TypesOfCheck 

–tells the server what types of checking the client expects the 
server to perform on the on the query item(s).

• WantBack

–tells the server what the client wants to know about the query 
item(s).



TLS Sub-Protocols

TLS

Application

TCP

Handshake

Alert CCS

Record



TLS Handshake Overview

Ciphers:

• RSA, DSS, and DH

• Elliptic curves, Kerberos, and Fortezza

• RC4, DES, 3DES, IDEA 

RC4 is the default encryption algorithm

• Lots of old 40-bit software around

• Very weak. 

HMAC MD5 or HMAC SHA-1 are the common 

MAC



The TLS Handshake Protocol

hello request B   A : ()
sent by the server at any time, simple notification that the client

should begin the negotiation process anew by sending a client
hello

This message should not be included in the message hashes which
are used in the finished messages and the certificate verify
message.

client hello A  B : A; Na; Sid; Pa

nonce Na, called client random, 
session identifier Sid. The model makes no assumptions 

about the structure of agent names such as A and B. 
Pa is A's set of preferences for encryption and 

compression; 
both parties can detect if Pa has been altered during 
transmission (using the message hashes in finished
messages and the certificate verify message).



The TLS Handshake Protocol

server hello B   A : Nb; Sid; Pb

nonce Nb (called server random). 
Same session identifier 
Pb his cryptographic chice, selected from Pa.

server certificate B  A : certificate(B;Kb)

The server's public key, Kb, in a cert signed by a trusted CA

Server key exchange message B  A : gy

sent by the server only when the server certificate message does 
not contain enough data to allow the client to send a PMS. This 
message (may) contain the DH parameter of B "gy", for 
calculating the PMS. (Another variant, not discussed here)



The TLS Handshake Protocol

certificate request B   A : certificate_types,

certificate_authorities

server hello done B   A : ()

client certificate* A   B : certificate(A; Ka)

either client key exchange A   B : gx

or encrypted premaster secret A   B : {PMS}Kb

certificate verify* A   B : SigKa (Hash {Nb; B; 

PMS})

Optional messages are starred (*)
In certificate verify, A authenticates herself to B by signing HAsh 

of some relevant messages to the current session. 
Paulson: Important only to hash Nb, B and PMS.



The TLS Handshake Protocol

M = PRF(pre_master_secret, "master secret",

Client_random + Server_random)

Both parties compute the master-secret M from PMS, Na and Nb

finished A   B : PRF(M, "client finished" , 

hash(handshake_messages)) 

finished B  A : PRF(M, "server finished" , 

hash(handshake_messages)) 



The TLS Handshake Protocol

According to the TLS specification, client hello does not 
mention the client's name. But server needs to know 
where the request comes from; in practice gets this 
information from TCP. That it is not protected and 
could be altered by an intruder.

The master secret is hashed into a sequence of bytes, 
which are assigned to the MAC secrets, keys, and non-
export IVs required by the current connection state:

• a client write MAC secret, 

• a server write MAC secret, 

• a client write key, 

• a server write key, 

• a client write IV, and 

• a server write IV



The TLS Handshake Protocol

The symmetric client write key is intended for 

client encryption, while server write key is 

for server encryption; each party decrypts 

using the other's key. 

Once a party has received the other's finished 

message and compared it with her own, she 

is assured that both sides agree on all 

critical parameters, including M and the 

preferences Pa and Pb. 

Only now she may begin sending 

confidential data.



The TLS Handshake Protocol

The TLS specification erroneously states that 

she can send data immediately after sending 

her own finished message, before 

confirming these parameters; 

• An attacker may have changed the preferences 
to request weak encryption. 

• This is exactly the cipher-suite rollback attack, 
which the finished messages are intended to 
prevent.

• TLS corrects this error.



The TLS Handshake Protocol

For session resumption, the hello messages 

are the same.

After checking that the session identifier is 

recent enough, the parties exchange 

finished messages and start sending 

application data.

Each party has to store the session parameters 

after a successful handshake and look them 

up when resuming a session.

Session resumption does not involve any new 

message types.



Certificates, CAs, Browsers, and Servers

Many CAs’ certificates pre-loaded with the 

browser: 

• ATT, VeriSign, …

• Can be viewed in the browser, e.g.,

–Navigator 6: tasks, security and privacy, security 
manager

User surfs to 

https://www.mystockbroker.com/

Browser connects to port 443, sends nonce 

and gets back servers’ cert & nonce



Certificates, CAs, Browsers, and Servers

Browser verifies cert; encrypts a pre-master 
secret with server’s public key

• Process works if everyone is careful
–Some browsers come with 100+ CAs’ certs; easy to mistake the name

–Some CAs may be unreliable

–Pre-master secret may be predictable

–Certificates expire and signatures may not check

–Virus may corrupt either party

Rest of the communications are protected 

• Server asks for password, credit card #, tax ID 
#, etc.

–Sometimes servers get hacked and all customers’ secrets get 
published

• And there’s a lot of old “40-bit” software around



Personal Certificates and Client-Side 
Authentication

Clients (browsers) can have certificates too

• CA signs client’s public key

• Obtained from well-known CAs:

–VeriSign, ATT, MCI, … 

–Costs and policies vary

• Can be viewed in the browser, e.g.,

–options, security, personal certificates

• Two-way strong security

–No server access to user’s secret

–Good security but not widely used

–Most secure web sites ask client for a simple password (encrypted)

–Worse, most secure Web sites only secure the “payment screen”



TLS Limitations

In all cases, have to trust other party’s CA

• Usually not even aware of the choice

• How can you trust 115 CAs?

Password or credit card authentication allows unlimited guessing

Systems on both sides may get hacked or infiltrated with untrusted 

code

For efficiency reasons, most screens are not protected

Inherent back-end security target 

• Many exposures, examples

No non-repudiation and huge dispute rates

• Netscape introduced “form signing” on navigator 4.04

• Not supported by Explorer

No convenient “wallet” software 



Using TLS

Warning screen from a secure page:

https://www.somewheresecure.com



TLS  Architecture

Handshake Alert
Change 
Cipher 
Spec

Application
• The Change Cipher Spec protocol 

consists of a single message that 
is sent by both the client and 
server to notify the receiving 
party that subsequent data will 
be protected under the newly 

negotiated Ciphersuite and keys.

• The Alert protocol specifies the 
TLS alert messages. 

• The Record Layer provides the encapsulation of the upper layer data. 
The data is fragmented, optionally compressed, a MAC is appended, 
and data and MAC are encrypted.  Each transport connection is 
assigned to a unique TLS session.

Record Layer

Reliable Transport

Reliable Transport
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The basic Model: Alice, Bob, Intruder

Well-known in network security world

Alice + Bob want to communicate securely (privately, without 

modifications)

Alice and Bob are “roles”

Intruder may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control 
messages

data data

Alice Bob

Intruder



Syntax: Roles as trace Predicates

Think of a module or “role” as a formula Alice(n;x,y)

Analogy: think of p(n,x,y) a FOL formula, like (x > y+n)

Alice(n;x,y) is not talking about single values of variables, (like 

p does), but about traces (sequences of values).

As you may write ξ sat p(n,x,y) (sat is usually written “ |= ”),

for instance (2,10,4) sat (x > y+n)

You can also write τ sat Alice(n;x,y) for instance 

((1,0,0), (1,1,0), (1,1,0), (1,1,8), (1,8,8), …)

sat (x=y=0   □ (x’ ≠ x  y ≤ x’ ≤ y’ +1) )



Syntax: Variables, Predicates

Set of vars V={x,x1,x2,x3,y,y1, …} called state variables

(each of a determined type), 

construct a copy of them called primed variables

{x',x1',y', …}

FOL predicates with free vars in V are called state 

predicates

and predicates with free vars in V united V' are called

transition predicates

st_pred, tr_pred

(x=y=0) is a state predicate

(x’ ≠ x  y ≤ x’ ≤ y’ +1) )  is a transition predicate



Syntax: Events, Stuttering

Transition predicates of the form

( t(x) ≠ t(x') )  N(x,x')  where x is a tuple of variables

are called events. Events exclude stuttering (x=x')

x'=x+1 is not an event (syntactical criteria) but it 

excludes stuttering. It is equivalent to the event

x'≠x   x'=x+1

Note that the disjunction of events is wlog also an event 

rewirting:

( t(x) ≠ t(x') )  N(x,x') )  ( s(x) ≠ s(x') )  M(x,x') )

( (t,s)(x) ≠ (t,s)(x') )  (N  M)(x,x') )



Syntax: TLA Normal Form 

A TLA formula in normal form  is:

… st_pred  □ ((event  tr_pred)  (event  tr_pred)  …)

Our hlpsl is close to this TLA form

Note: conjunction of TLA normal forms is (wlog) normal form

Conjuction is parallel composition of modules (roles)!

Two types of variables:

flexible variables (state of the system)

rigid variables (parameters, constants, may be instantiated at some 

point later)



TLA Example

V={x,y}

Let Prg(x) = (x=0)  □ (x'≠x  x'=x+1)

Then the following traces are in Tr(Prg):

(0,3), (0,4), (0,5), (0,6), (0,7), …

(0,3), (1,4), (2,5), (3,6), (4,7), …

(0,0), (1,1), (2,2), (3,3), (4,4), …

(0,0), (0,1), (1,2), (1,3), (2,4), …

If a TLA program talks about variable x only, it does not say anything 

about variable y.

All traces of Prg are generated by the following "symbolic trace":

(0,*), (1,*), (2,*), (3,*), (4,*), …

by:

take a prefix (including all)

introduce any number of x-stuttering steps,

repeat (x0,*) any number of times (even infinite)

replace the do-not-cares "*" by any values of y



hlpsl Example

Prg(x) = (x=0)  □ (x'≠x  x'=x+1)

Using a signal “Trigg”:

Role Prg(Trigg,x) := 

Owns x

Init x = 0

Trans 
Trigg  x’ = x +1

The var x is modified only by Prg, but 

it may seen outside.

Prg  

Trigg

x



TLA Example

V={x,y}

Let Prg(x) = (x=0)  □ (x'≠x  x'=x+1)

Let New(x,y) := Prg(x)  Prg(y)

Exercise: What are the traces of this 

program?



TLA Example, modelling channels

V={sec:{0,…59} ,min :{0,…59},hr :{0,…11} }

Sec := (sec'≠sec), etc.  Events

Clock: = A  B  C

A := (sec = 0)  □ ( Sec  sec’ = sec +1 (mod 60)

 Sec  sec’ = 0  Min)

B := (min = 0)  □ ( Min  min’ = min +1 (mod 60)

 Min  min’ = 0  Hr)

C := (hr = 0)   □ (  Hr   hr’ = hr +1  (mod 12))

A  B  C  

Sec
Min Hr

hrminsec



hlspl Example, the clock

Clock: = A  B  C

Role A(Sec,sec,Min) := 

Init sec = 0

Trans Sec  sec’ = sec +1 (mod 60)

Sec  sec’ = 0  Min

A  B  C  

Sec
Min Hr

hrminsec



Implementing the clock with local variables

Who owns the minutes?

Separate Min + min, etc

Redefine Min := v_Min’

≠v_Min

Role A(Sec,sec,Min) :=

Owns sec, Min 

Init sec = 0

Trans Sec  sec’ = sec +1

Sec  sec’ = 0  Min

A = (sec = 0)  □ ( Sec  sec’ = sec +1
 Sec  sec’ = 0  Min
 sec ≠ sec’ = 0  Sec
 Min  Sec  sec’ = 0 )

A  B  C  

Sec
Min Hr

hrminsec



Types of Channels

role A (p; v, channels: channel 

(dy|secure|ota|…) ) :=

…

end role



Basic Roles: Semantics

role Basic_Role (…) :=

owns {θ: Θ}

local {ε}

init Init

accepts Accept

transition

event1  action1

event2  action2

…

end role

Trigg(Basic_Role) := event1  event2  …         %% This is also an event!

Init(Basic_Role)  := Init

Accept(Basic_Role):= Accept(A)  Accept(B)  Accept

Mod(x,Basic_Role) :=  {eventi | x’ ocurrs in actioni (or in a LHS channel val)}

Step(Basic_Role)  := Trigg(Basic_Role)  (event1  action1)  (event2  action2)  ...

TLA(Basic_Role)   :=  ε { Init  □ [ (event1  action1)  (event2  action2)  ...

 ( _(θΘ) θ‘≠ θ  Mod(θ,Basic_Role)) ] }



Basic Roles: Semantics

role A (…) :=

owns {θ: Θ}

local {ε}

init Init

accepts Accept

transition

event1  action1

event2  action2

…

end role

Trigg(A) := event1  event2  …         %% This is also an event!

Init(A)  := Init

Accept(A):= Accept

Mod(x,A) :=  {eventi | x’ ocurrs in actioni (or in a LHS channel val)}

Step(A)  := Trigg(A)  (event1  action1)  (event2  action2)  ...

TLA(A)   :=  ε { Init  □ [ (event1  action1)  (event2  action2)  ...

 ( _(θΘ) θ‘≠ θ  Mod(θ,A)) ] }



Basic Roles: Semantics

role A (…) :=

owns {θ: Θ}

local {ε}

init Init

accepts Accept

transition

event1  action1

event2  action2

…

end role

Trigg(A) := event1  event2  …         %% Also event!

Init(A)  := Init

Accept(A):= Accept

Mod(x,A) :=  {eventi | x’ ocurrs in actioni
(or in a LHS channel val)}

Step(A)  := Trigg(A) 

(event1  action1)  (event2  action2)  …

TLA(A)   :=  ε { Init  □ [

Trigg(A)  Step(A) 

 ( _(θΘ) θ‘≠ θ  Mod(θ,A)) ] }

Note:

Step(A)  (event1  action1)  (event2  action2)  … 

TLA(A)  =  ε { Init  □ [

(event1  action1)  (event2  action2)  …

 ( _(θΘ) θ‘≠ θ  Mod(θ,A)) ] }



Semantic of Composed Roles: modular 
approach 

A  B = Composition(A,B):

Parallel, Sequential (+taking ownership, hiding)

IF-Programs  hlpsl-Programs  TLA-Formulas

IF(A) , IF (B)    A , B    TLA(A) , TLA(B)

  

IF(A)  IF (B)    A  B    TLA(A)  TLA(B)

For Parallel composition:

TLA(A)  TLA(B) = TLA(A)  TLA(B)  extra_glue (for ownnership)



Semantic of Composed Roles: 
flattening approach 

A  B = Composition(A,B):

Parallel, Sequential (+taking ownership, hiding)

flatten: hlpsl-Programs  hlpsl-Programs

For basic roles: flatten(A) = A

For composed roles: flatten(A  B) = arrange(flatten(A),flatten(B))



Composed Roles: Parallel

role Par_Role ( parameters; variables, channels) :=   % Parallel Composition of A and 

B

owns {θ:Θ}

local {ε}

init Init

accepts Accept

A  B

end role

Trigg(Par_Role)   := Trigg(A)    Trigg(B)

Init(Par_Role)   := Init(A)    Init(B)    Init

Accept(Par_Role) := Accept(A)  Accept(B)  Accept

Mod(x,Par_Role)  := Mod(x,A)   Mod(x,B)

TLA(Par_Role)    :=  ε { Init  A  B 

 □ [ ( _(θΘ) θ‘≠ θ  Mod(θ, Par_Role)) ] }



Composed Roles: Seq

role Seq_Role ( parameters; variables, channels) :=  %Sequential Composition of A and B

owns {θ:Θ}

local {ε}

init Init

accepts Accept

A ; B

end role

Trigg(Seq_Role)   := (flag = 0  Trigg(A))    (flag = 1  Trigg(B))

Init(Seq_Role)   := flag = 0  Init(A)    Init

Accept(Seq_Role) := Accept(B)  Accept

Mod(x,Seq_Role)  := (flag = 0  Mod(x,A))   (flag = 1  Mod(x,B))

TLA(Seq_Role)    :=  ε,flag {Init(Seq_Role) 

 □ [(Trigg(A) flag=0)  (Trigg(B) flag=1)

(flag' ≠ flag => flag' = 1

 Accept_A’

 Init_B')



Example: Share protocol

k = hash(Na.Nb)

choose Na
sent it encrypted

withPK of B
{Na}PK(B)

choose Nb
sent it encrypted
withPK of A

{Nb}PK(A)

A B



hlpsl: Share: basic roles

role Initiator(A,B, PK: agent -> public_key; SND, RCV: channel (dy)) :=

exists St:{0,1,2}, Na:text (fresh), Nb:text

init St=0

transition

St=0  RCV(start)  St'=1  SND({Na'}PK(B))

St=1  RCV({Nb'}PK(A))  St'=2  secret(hash(Na,Nb’))

goal

secrecy %  of hash(Na,Nb)

end goal

end role

role Responder(A,B, PK: agent -> public_key; SND, RCV: channel (dy)) :=

exists St:{0,1,2}, Na:text, Nb:text (fresh)

init St=0

transition

St=0  RCV({Na'}PK(B))  St'=1  SND({Nb'}PK(A))  secret(hash(Na’,Nb’))

goal secrecy end goal

end role

Explicit secrecy goals



Needham-Schroeder Public Key Protocol 
(NSPK): Alice

role Alice (A,B: agent,

Ka, Kb: public_key,

SND,RCV: channel (dy)) played_by A def=

exists State : nat, Na : text (fresh), Nb: text

init State=0

knowledge(A) = { inv(Ka) }

transition

step1. State=0 /\ RCV(start)  =|> State'=1 /\ SND({Na'.A}Kb)

step2. State=1 /\ RCV({Na.Nb'}Ka) =|> State'=2 /\ SND({Nb'}Kb)

end role

played_by

knowledge

start message to signal an initiator that he should start

step1 and step2 are merely labels



NSPK: Bob

role Bob(A: agent,      

Ka, Kb: public_key,      

SND,RCV: channel (dy)) played_by B def=

exists State : nat, Na: text, Nb: text (fresh)

init State=0

knowledge(B) = { inv(Kb) }

transition     

step1. State=0 /\ RCV({Na'.A}Kb) 

=|> State'=1 /\ SND({Na.Nb'}Ka)

step2. State=1 /\ RCV({Nb}Ka)     

=|> State'=2 

end role



NSPK: Composing the roles

role NSPK(S,R: agent -> channel (dy),

Instances: (agent,agent, public_key,public_key) set) def=  

exists A, B: agent, Ka, Kb: public_key

composition 

/\_{in((A,B,Ka,Kb),Instances)}

Alice(A,B,Ka,Kb,S(A),R(A))

/\ Bob(A,B,Ka,Kb,S(B),R(B))

end role



NSPK: Sessions and Goals

role Environment() def=

composition

NSPK([(a,s_a),(b,s_b)],                   % S

[(a,r_a),(b,r_b)],                   % R

[(a,b,ka,kb),(a,i,ka,ki)])           % Instances

end role

goal

Alice weakly authenticates Bob on Nb   

Bob weakly authenticates Alice on Na

secrecy of Na, Nb

end goal



Share: goals

1. A->B: {NA}k(B)

2. B->A: {NB}k(A)

Agents will use h(NA,NB) as shared key.

The authentication goals 

A authenticates B on NB  (or on (NA,NB)) 

and  

B authenticates A on NA  (or on (NA,NB))

are trivially violated:

1. i(a) -> B: {X}k(B)

2. B -> i(a): {nb}k(A)

Now B believes (X,nb) is the shared key between a and him, while a is 

not even present.

Not a "real" attack: 

• intruder does not find out the nonce nb 

• and can never use the shared key



Share

Also execution of B is stuck: nobody except B knows the 

shared key, nobody can send messages with this key.

Same problem with the first-phase of IKE: intruder can 

play a MiM, but can not find out the key and the 

protocol execution is stuck, no second-phase protocol 

can be executed.

Protocol does not satisfy the authenticate goal: 

when B receives the first message of the protocol, he can 

not be sure that it actually comes from A. 

A must prove her presence by sending a message 

encrypted with the key h(NA,NB).



Share

See this part of protocol as a challenge, add the response:

1. A->B: {NA}k(B)

2. B->A: {NB}k(A)

3. A->B: {0,..}h(NA,NB)

4. B->A: {1,..}h(NA,NB)

“0”, “1” inserted to distinguish the two messages 

then intruder can not simply reflect this message 3 from A 

back to A

New goals:

A authenticates B on NA,NB,MA

B authenticates A on NA,NB,MB

secrecy of NA,NB,MA,MB



“Incomplete Protocols”

"the key-exchange phase of the protocol does 

not YET provide the authenticate itself, but 

rather after the first use of the key the 

agents authenticate each other."

We found no further attacks on SHARE.

We have taken SHARE (with the additional 

messages 3 and 4) as an example and could 

verify (within seconds!) secrecy and weak 

authentication (in a typed model for an 

unbounded number of sessions and agents).
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IP mobility

MN moves from one IP address to another

• moves between network coverage areas or media types, 

• its logical point of network access changes, or

• a whole subnetwork moves (not covered in MobileIP). 

Mobility protocols

• maintain existing connections over location changes 

• ensure that MN can be reached at its new location. 

Location management = mechanism for informing other 
nodes about MN's current address.  Approaches: 

• a directory service where MN's location is maintained or 

• direct notifications to the nodes that need to know about 
the new location.



Mobility Management

Visited Domain

LR HA

Home Domain

Two addresses: 
• HoA: home address (fixed: to identify MN)
• CoA: care-of address (to locate MN)

that changes at each new pt of attachment.

How are such „Bindings“ created / modified?

CN
Correspondent Node

Home Agent
Leaf

Router



Mobility Management

LR HA

Triangular Routing
Binding Update (BU): 

Route optimization

CN



Security Problems

LR HA

Attacker may redirect the traffic:
MiM
DoS (starving, flodding, boming)

CN

X



IP V6

Adress size increased from 32 to 128 bits.

Auto-configuration to generate locally CoA:

Routing prefix MAC Address

• 64-bit routing prefix, which is used for 

• routing the packets to the right network 

• 64-bit interface identifier,

• which identifies the specific node

• can essentially be a random number. 



Mobile IPv6

MN is identified by a home IP address (HoA)

IP addresses in MIPv6 can identify either a node or a 
location on the network, or both.

Home agent (HA, a router)

• acts as MN's trusted agent and 

• forwards IP packets between MN's correspondent nodes 
(CN) and its current location, the care-of address (CoA)

The MIPv6 protocol also includes a location 
management mechanism called binding update (BU). 

MN can send BUs to CN and HA to notify them about the 
new location so that they can communicate directly 

MN may also be triggered to sending a BU when it 
receives a packet from a new CN via HA.



Binding Update

MN and HA have a permanent trust relationship and a 

preconfigured security association for encrypted and 

authenticated communication.

MN informs HA about its location via this secure tunnel. 

MN and its HA can cooperate to send BUs to CNs, with 

which they often have no preexisting relationship.

CN stores the location information in a binding cache 

entry, which needs to be refreshed regularly by 

sending a new BU. 



Threats

Misinform CN about MN’s location 

• Redirect packets intended for MN

–compromise of secrecy and integrity

–denial-of service (MN unable to communicate).

Attacker sending bogus BUs may use own address as CoA, 

impersonating MN. 

• highjack connections between MN and its CNs or 

• open new ones. 

Or redirect packets to a random or non-existent CoA (DOS). 

• MN has to send a new BU every few minutes to refresh the 

binding cache entry at CN.

the attacker can make any node believe that any other node, 

even a non-MN one, is MN and has moved to the false CoA. 

• Side effect of making mobility transparent.



Replay Attacks

Time stamps would be problematic because 

MNs may not be able to maintain sufficiently 

accurate clocks. 

Sequence-numbered BUs, on the other hand, 

could be intercepted and delayed for later 

attacks.

A nonce-based freshness mechanism seems 

practical because many related 

authentication and DoS protection 

mechanisms use nonces anyway. 



Why not IPSec, IKE, and PKI?

BU authentication: could use strong generic 
authentication mechanisms and 
infrastructure: IPSec, IKE, and PKI. 

Overhead too high for low-end mobile devices 
and for a network-layer signaling protocol. 

Internet mobility protocol should allow anyone 
to become MN and it must allow all Internet 
nodes as CNs.

• A single PKI must cover the entire Internet.



Cryptographically Generated Addresses 
(CGAs)

Take last 64 bits of the IP address (interface identifier) 

as one-way hash of a PK. MN signs its location 

information with the corresponding private key and 

sends the PK along with the data. 

The recipient hashes the public key and compares HAsh 

to the address before verifying the signature on the 

location data. 

Used without any trusted third parties, PKI, or other 

global infrastructure. 

Weakness: at most 64 bits of the IP address can be used 

for Hash. Perhaps brute force attack will become 

possible during the lifetime of MobIPv6.



CGAs

Strong signature key generation expensive, but weak 

signature keys may be used.

Advances in storage technology may enable the attacker 

to create a large enough database for finding matching 

keys at high probability. 

CGA do not stop the attacker from inventing new false 

addresses with an arbitrary routing prefix. The 

attacker can generate a public key and a matching IP 

address in any network. Thus CGA addresses prevent 

some packet-flooding attacks against individual 

addresses but not against entire networks.

Public-key protocols (including CGA) are computationally 

intensive and expose the participants to DoS.



Routing-based authentication

Idea: send 1st message through a relatively safe route 

(hope it is not intercepted). 

• Here: Route between CN and HA. 

• CN can send a secret key to HA (plaintext). 

HA forwards key to MN (secure tunnel), 

MN uses key for authenticating a BU to CN:

• MN  CN: BU with MAC (computed with secret key).

HA

CN



Routing-based authentication

Reasonable: very few Internet nodes can listen to or modify 

packets on the right routers to mount an attack against a 

given connection.

• At most 10-20 routers see the secret keys for a specific 

connection 

Not secure in the classical sense

• But much better than unauthenticated situation. 

HA and CN are typically located on the wired network and 

communication is relatively secure compared to the packets 

to and from a wireless MN.

• An attacker between MN at home and a CN can mount equally 

damaging attacks

• Recall that the goal is to address the additional threats created by 

mobility

Weaker than CGA



Sending 2 Pieces of Authentication Data

Other proposals for BU authentication:

Send 2 pieces of authentication data between 

CN and MN via 2 independent routes and 

hoping that most attackers are unable to 

capture both of them. 

HA

CN



Leap-of-faith authentication

MN sends a session key insecurely to CN at the 

beginning of their correspondence and the 

key is used to authenticate subsequent BUs, 

no safe route.

• Attacker can send false key before the MN sends 
the key

• Need a recovery mechanism for situations where 
MN or CN loses its state; attacker can exploit this 
mechanism

• Attacker can trigger the BU protocol at any time 
by sending to MN's home address a spoofed 
packet that appears to come from CN



Another DoS

Authentication does not prevent the attacker from lying about 

its own location. 

Attacker acts as MN, sends false location data to CNs and get 

them to send traffic to an arbitrary IP address. 

It first subscribes to a data stream (e.g. a video stream from a 

public web site) and then redirects this to the target 

address. 

Bomb any Internet node or network with excessive amounts 

of data. 

• Attack an entire network by redirecting data to a nonexistent 
address and congesting the link toward the network.

The attacker may even be able to spoof the (say TCP) 

acknowledgements



Another DoS (cont)

The attacker performs the TCP handshake itself and thus knows the 

initial sequence numbers. After redirecting the data to the target, it 

suffices to send one spoofed ack per TCP window to CN.

TCP provides some protection against this attack: 

• If the target address belongs to a real node, it will respond with TCP Reset, 
which prompts CN to close the connection. 

• If target is a non-existent address, the target network may send ICMP 
Destination Unreachable messages. Not all networks send this latter kind 
of error messages.

The attack is not specific to MIPv6:

• Dynamic updates are made to Secure DNS, there is no requirement or 
mechanism for verifying that the registered IP addresses are true. 

• ICMP Redirect messages enable a similar attack on the scale of a local 
network. We expect there to be other protocols with the same type of 
vulnerability.



Variation: Bombing HoA

Im MIPv6 the MN has a default address, to which data will be 

sent when its current location is unknown. 

Attacker claims to have a HoA in the target network. It starts 

downloading a data stream and either sends a request to 

delete the binding cache entry or allows it to expire. This 

redirects the data stream to the false HoA . 

CGA prevents bombing individual addresses but not whole 

networks

• generate a new address with its routing prefix.



Bombing HoA

The target itself cannot do anything to prevent the attack. 

• it does not help if the target stops sending or accepting BUs. 

The attacker needs to find a CN that is willing to send data 

streams to unauthenticated recipients.

• Many popular web sites provide such streams.

A firewall on the border of the target network may be able to 

filter out packets to nonexistent addresses. 

• However, IPv6 addressing privacy features can make such 

filtering difficult.



Limiting bombing attacks: Return 
Routability

Test the return routability (RR) of MN's new address

• CN sends a packet with a secret value to the new location and 
accepts the BU only if MN is able to return the value (or hash)

• Thus MN can receive packets at the claimed address 

• Number of potential attackers is strongly reduced

Figure shows how a BU is authenticated using two secrets, 
which CN sends to MN's home and CoAs. The secret sent 
directly to the CoA forms the RR test. 

The RR test can be seen as a variation of the cookie exchange, 
used in TCP, Photuris, and IKE

HA

CN



RR

Expiry of a binding cache 

• Deleting the cache entry means that MN's new address defaults to the HoA 

, but since MN may have become unreachable, it is not always possible to 

test RR for the new address. 

One solution: 

• mark the cache entry as invalid and 

• stop sending data to MN until the RR test succeeds 

–Then some cache entries are never deleted. 

Alternative: additional RR test for the HoA  during every BU 

• Invariant: a successful RR test for the HoA  has been performed recently 

• When the cache entry needs to be deleted, it can be deleted immediately

–BU cancellation, expiring cache entry, or failing BU authentication

• This limits bombing-attack targets to networks where attacker has recently 

visited.



RR

In routing-based authentication (CN sends a 

plaintext key to MN via its HoA), the same 

secret key can also serve as the RR test for 

the HoA . 

Thus CN tests return routability of both HoA 

and CoA.

RR is complementary to CGA-based BU 

authentication, which does not prevent 

bombing of the home network.



Transport layer: Flow Control

When sending a data flow into a new route, CN could first 

verify that this route accepts the data

Send first a single packet and increase the transmission rate 

gradually. 

TCP: reset the TCP window size to one packet when MN 

moves. This would, in effect, test return routability of the 

new route before sending large amounts of data into it.

Adding a secure RR test to all transport protocols and 

changing existing implementations is not be possible in 

practice. 

Some transport-layer protocols either do not practice TCP 

compatible congestion control or allow spoofing of 

acknowledgments. 

Therefore: return routability test in the IP layer.



DoS Attacks against unnecessary BU 
Authentication

When a MIPv6 MN receives an IP packet from a new CN 
via its home network, it may automatically send a BU 
to CN.

The attacker can exploit this by sending MN spoofed IP 
packets (e.g. ping or TCP SYN packets) that appear to 
come from different CN addresses.

The attacker will automatically start the BU protocol 
with all these CNs. 

If CN addresses are real addresses of existing IP nodes, 
most instances of the BU protocol will complete 
successfully. The entries created into the binding 
caches are useless.

This way, the attacker can induce MN or CN to execute 
the BU protocol unnecessarily, which will drain host's 
resources. 

A strong cryptographic authentication protocol is more 
vulnerable than a weak or unauthenticated.



Reflection and Amplification

Reflection: Attacker sends data to other nodes and tricks them into 

sending the same number, or more (amplification), packets to the 

target. 

• Possible even when ingress filtering prevents source address spoofing. 

The location management protocols could also be used for reflection. 

For example, CN in Figure responds to the initial packet by sending 

two packets to MN (one to the HoA  and one to the new address). 

• If public-key authentication is used, the packets sent by CN may be 

significantly larger than the one that triggers them.



Preventing Resource Exhaustion: Delaying 
Commitment

Idea: delay committing one's resources until other party has shown its honesty

Require first a weaker authentication, such as a RR, before expensive 
computation. 

Making the protocol parties stateless:

• usually only the responder can be stateless, 

• not clear which party initiates the BU process and which one responds. 

–MN normally initiates the authentication, 

–this may be triggered by a packet belonging to another protocol that arrived from CN via HA. 

–Moreover, if a packet sent by CN triggers a BU, CN's IP layer does not know that this was the 
case because the IP layer is stateless and does not maintain a history of sent packets. 

• Make CN stateless until the BU has been authenticated.

One way in which CN can remain stateless is to derive a values Ka using a 
one-way function from a secret value N known only by CN and a value 
dependent on the MN: 

• CN uses the same value of N for all MNs. 

• It can discard Ka because it can recompute the values after receiving the final 
message.

CN generates a new secret Ni periodically.



Cryptographic puzzles

Used to protect against resource-exhaustion attacks.

A server requires its clients to solve a puzzle, e.g. bruteforce 
search for some input bits of a one-way function, before 
committing its own resources to the protocol. 

The server can adjust the difficulty of the puzzles according to 
its load. 

Solving the puzzle creates a small cost for each protocol 
invocation, which makes flooding attacks expensive but has 
little effect on honest nodes. 

Drawbacks:

• IP layer does not know which node is the server (i.e. the 
respondent)

• MNs often have limited processor and battery capacity while an 
attacker pretending to be a MN is likely to have much more 
computational resources

The puzzle protocols work well only when all clients have 
approximately equal processing power



Setting a limit on the amount of resources

Processor time, memory and communications bandwidth, used 

for location management. 

When the limit is exceeded, communication needs to be 

prioritized. 

A node that exceeds the limit should stop sending or 

accepting BUs and allow binding cache entries to expire. 

Although communication can continue via MN's home 

network, it is suboptimal. 

Node should try to resume normal operation when attack may 

be over.

Ingress filtering at the attacker's local network mitigates the 

resource exhaustion attacks by making it easier to trace 

the attacker and to filter out the unwanted packets.



Favoring Regular Customers

CN's local security policy: allow BUs with some 

• high-priority MNs or 

• those with which it has a long-term relationship or 

• recent meaningful communication. 

The decision may violate the layering principle: a Web server 
could accept BUs from its clients after it has successfully 
executed the TCP handshake. 



How does MN obtain its CoA?

IPv6 stateless address autoconfiguration used to obtain 

an IPv6 address for MN.

Host combines tentative interface identifier with link-

local address prefix and probes address with a 

Neighbor Solicitation message. 

If another host is already using this address then he 

sends a Neighbor Advertisement message.

An intruder can use this protocol exchange for a DoS

attack.

IETF Send WG tries to solve this problem. 

Stateful address autoconfiguration (DHCP)



Security Problems?

Binding Updates (BU) are 

security relevant. 

 BU enables

source routing

Unprotected BUs:

- Denial of Service attacks

- Man-in-the-Middle attacks

Binding Updates between HA<->MN and between CN<-> MN experience different 

protection. 

Binding Update

Data Flow without Route

Optimization

Mobile Node
Home Agent

Correspondent

Node

Visited Network

Home Network

Leaf Router

Packet

Modifications

Adversary



The Home Address

The home address (HoA) must be unique for 

each MN (global reachable IP address).

Functionality:

• Connection endpoint identifier for long-lived 
connection

• Is used to reach MN

• (HoA,CoA) pair used to create profile for 
personalization

• Can used to identify MN for billing and charging
(additionally to NAI)



Selected Problem 1: Privacy [RFC2462]

Hosts selects interface identifier

Interface identifier is based on the link layer address

Since the link layer address rarely changes MN is 

uniquely identified

CoA Prefix reveals location of MN (source address)

HoA  

• represents long-lived endpoint identifier

• is unencrypted

• revealed to CN (Route Optimization)

CoA and/or HoA  enable profiling



Solutions for Privacy Problem

Bi-directional IPSec tunnel from MN 

to HA

• Very expensive communication

HA option encryption

• Requires modification to IPSec

IPv6 Privacy Extension 

• Changing stateless address 
autoconfiguration

Disable Route Optimization

• Performance degradation 

Castelluccia Mobile IPv6 Privacy 

Proposal 

• Uses Temporal Mobile Identifier

• TMI changed temporarily, HoA 
encrypted
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Standard Sec  Infrastructure cannot be used

To enable route optimization 

 BU must be sent to CN

Consequences:

• Security Association between MN-CN required

• Previously suggested: IPsec (together with IKE)

• IPsec does not address mobility specific problems; IKE is 
computationally expensive; 

• Public key infrastructure not available

• Protection of BU difficult 
 IPSec policies too coarse grained

• CN has to run many IKE exchanges

• CN has to store a large number of SAs

• Vulnerability against active attackers may be acceptable
 Unauthenticated key agreement/key transport



Selected Problem 2: Address Ownership

Authorization Problem

• MN must show that it is owner of an IP address

Is this MN allowed to set the (CoA,HoA)-binding?

First proposal to address this mobility & security 

problem:

• Purpose Built Keys

• Proposal does not require a PKI or similar security 
infrastructure

• Does not provide “perfect” security (i.e. protection against 
all attacks)

After this proposal was published similar proposals have 

been submitted.
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Mobile IPv6 Security 
MN  CN Binding Update

MN

Home 
Network

CN

HA

Home Test Init

Home Test Init

Binding 
Update Care-of Test InitHome Test

Home Test

Care-of
Test

Security Property: Return Routability
Verifies that a node is able to respond to packets sent to a given address
Assumption: Routing infrastructure is secure



HIP (Host Identity Payload  + Protocol) 
Overview

Protocol proposal submitted by Bob Moskowitz. 

HIP is developed independently (not within an IETF 

working group).

Protocol proposal contains:

A new namespace / new identity

An authentication and key exchange protocol 

Architecture



HIP: A new namespace / new identity

Basic Idea: Cryptographic identity for a host 

An  IP address to identify a host is not the best idea 

(see multi-homed hosts, virtual interfaces)

Used Identities:

• Host Identity (=Public Key)  

• Host Identity Tag (=hash of the public key, 128 bit)

• SPI (same as in IPSec)

• LSI (32-bit Local Scope Identity)

Security Association indexed by Host Identity Tag (HIT)

32 bit value (LSI) is used to support IPv4 applications

Host Identities can be well-known or anonymous

Higher layers only see identities, not addresses



HIP Architecture
An additional Identifier

Application-specific 

identifiers
Application Layer

Transport Layer
Pairs <IP address, Port#> + 

Transport Protocol ID

Host IdentityHost Identity (HI)

Network LayerIP address

Data Link LayerLink layer address



HIP: Authentication and key exchange

The HIP protocol is used to create an IPSec ESP security association

The protocol has the following properties:

• DoS protection with the client-puzzle mechanism

• Re-keying provided by a separate protocol

• Digital signatures and certificates are exchanged in a DNS like data 
structure. 

• The DNS protocol is strongly integrated with HIP

• Identities are stored into the DNS (DNS Binary Labels allow reverse 
mapping).

Including the HIP identity in every packet would be difficult. 

Therefore HIP is always combined with IPSec ESP where the HIP 

Identity is “compressed” into IPsec ESP SPI. 



HIP Properties

IP addresses still used for routing packets. 

Bandwidth conservative

Each host must have at least one key pair

A 128 bit hash or tag to be used in system calls

End-to-end use but integration of intermediate devices 

planned. 

HIT replaces IP address as the ‘name’ of a host

Enables mobility and allows simpler multi-homing

Addressing realm friendliness

Support for different addressing schemes, end-to-end 

=> IPv4/IPv6 migration



What about PKI and HIP?

HIP assumes interaction with DNS

• Identity in KEY records

• DNSSEC required for trustable as the 3rd party 
authentication

Payload uses DNS RR formats

• Reuse existing code

• KEY, SIG, OPT, and A records

• Subject to change to reduce packet size



HIP Protocol Exchange

Initiator Responder

HIT(I), HIT(R)

HIT(R), HI(R), HIT(I), PK(R), HIP

Transform, ESP Transform,

HIP_Cookie, HIP SIG

HIT(I), HIT(R), HIP Cookie, LSI(R),

SPI(R), PK(I), HIP Transform, { ESP

Transform, HI(I)}k(i,r), HIP SIG

HIT(R), LSI(I), SPI(I), { HI(R), HIP

Cookie}k(i,r), HIP SIG



HIP Protocol Exchange 
Legend

Host Identity Tag – HIT

Host Identity – HI

I – Initiator

R – Responder

PK(R), PK(I) – Diffie-Hellman Public Key of Responder 
(Initiator)

k(i,r) – session key computed between I and R

HIP SIG – Digital Signature computed over the entire packet

HIP (ESP) Transport – List of algorithm to be negotiated 
(used)

HIP Cookie – Values required for the Client Puzzle

LSI – Local Scope Identity

SPI – Security Parameter Index



Special HIP Packets

Message for rekeying 

Bootstrapping for the case where the initiator 

does not possess the HIT of the responder.

Packet to announce readdressing

• Readdressing required because of:

–PPP reconnect

–DHCP new lease, IPv6 address prefix change

–Mobility related readdressing

–IPv6 privacy related IP address change



Summary

HIP introduces new and interesting concepts. 

The introduction of a new address space based on a 

cryptographic identity makes a lot of things easier:

• Mobility 

• Multi-Homing

• IPv4/IPv6 Transition

Solutions are already there for these problems; 

HIP solves the problems in a different way. 

Additionally HIP has security integrated into the 

protocol. 

Open Source implementations might create an 

interesting alternative. 



Authentication, Authorization and 
Accounting (AAA)

Authorization: Is a particular entity able to pay for the 

requested resources?

Which resource? 

• Certain services

• Specific QoS 

• Amount of time being online

• Data volume transmitted/received

Goal: 

• 1) Establishing a financial settlement 

• 2) Prevent unauthorized nodes from gaining access to resources

Two basic models for (1):

• Subscription-based Architecture

• Alternative Access Architecture



Subscription-based Architecture

Access 
Network

MN

AR

AAA

Home 
Network

AAAL

Terms: 

AAAL - Local AAA server

AAAH - Home AAA server

AAAH

AAA

EAP over PANA, 

IEEE 802.1x, 

ICMP, etc.

•MN is registered at home network (typically secret key based).

•Several protocol proposals exist for transport of AKA information 
between MN and the AAA attendant.



Alternative Access Architecture

Access 
Network

Charging

MN

AR

Background 
Payment System

Charging

Background 
Payment System

CCS CCCAAA

Terms: 

CCS – Credit Control Server

CCC – Cost Charging Centre

EAP over PANA, IEEE 

802.1x, ICMP, etc.



PANA

Protocol for carrying Authentication for Network Access 

(pana)

Provides carrier for EAP messages over IP (UDP)

Provides in-order delivery of packets

PANA is a protocol for heterogeneous network access 

(link layer agnostic).

PANA provides a mechanism for the PAC to discover the 

PAA on the link

Provides different mechanisms to prevent unauthorized 

nodes from accessing the network (interaction with 

other protocols)



PANA Framework

Note that some protocol interactions are optional. 
Terminology: http://www.ietf.org/internet-drafts/draft-ietf-pana-requirements-05.txt 

PaC EP PAA AAA

PAA Discovery

PANA Request

AAA Interaction

PANA Response

Filter information 
installation 

PANA SA PANA SA

Access control SA establishment 

Protected PANA Messages



PANA Security Association 
Establishment

PANA relies on EAP methods to produce keying material for PANA SA. 

PaC PAA AAA

AAA Session 
Key Transport

PANA SA PANA SA

EAP Authentication (PaC  AAA[L|H] Authentication)

PAA Discovery

Protected PANA Messages
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