
Service Oriented Architectures Security

Ernesto Damiani

Università degli Studi di Milano

Internet Security Protocols:
Specification and Modeling

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Brisbane, Sep 2003

Conclusions

Internet offers agent many identities

• user, ip, mac, tcp port, ... What is “A”, “ID_A”?

Many types of attackers (or channels)

• over the air, authentic channels, connection channels

• safer routes

Many types of DoS attacks

• flodding, bombing, starving, disrupting

Many types of properties

• besides authentication and secrecy

• “Incomplete protocols” (need to add extra messages to prove

authentication goals)

• key control, perferct forward secrecy, ...

• layered properties

–if attacker ... then ..., if attacker ... then ...

Internet

Protocols define

Format and order of msgs sent

and received among network

entities, and

actions taken on msg

transmission, receipt

• Examples: TCP, IP,

HTTP, FTP,PPP

Internet: “network of networks”

Standards

• RFC: Request for Comments

• IETF: Internet

Engineering Task Force

local ISP

company
network

administration
domains

core
router

host

server

mobile

access
router

Protocol layering in Internet

httpAppl.

802.3

HTTP-Protocol

Mobile Node
(MN)

Server

Access-Router

ISDN

http

tcpTrans. TCP-Protocol tcp

ipNetw. IP-Protocol ipipIP-Protocol

Eth.-Protocol Ethernet

ppp
Link /
MAC

PPP-Protocol ppp

hdlc HDLC-Protocol hdlc

Ethernet

PHY

„Indepentdent“
Layers

Headers

Tunneling

Internet Network Architecture

Internet

Internet/Web Applications

link

phy

ip

tcp

http

www

link

phy

ip

link

phy

ip

link

phy

ip

link

phy

ip

link

phy

ip

link

phy

ip

link

phy

ip

tcp

http

www

Peer
(Client)

Peer
(Server)

Encapsulation

TCP segment

IP datagramm

Ethernet frame
64 - 1500 bytes

HTML
user data

ip
ip hdr

http
appl. hdr

tcp
tcp hdr application data

802.2
Ethernetip hdr tcp hdr appl. hdr user data

14 bytes 20 bytes 20 bytes

At which layer security?

Access Point
or Gateway

http

tcp

ip

Ethernet

http

tcp

ip

Ethernet

Host

Application
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Wep

IPsec

TLS, WTLS

Kerberos, CMS,
custom token protocols

Separation of Concerns

Most security protocols today are separated into two

parts:

1) Authentication and key exchange protocols

2) Protection of data traffic

Step (1) is usually the most difficult one. Sometimes

this step is again separated into sub-steps for

performance reasons.

Internet protocol architecture

html xml xsl smil

802.2

802.3 802.4 802.5 802.11

HTTP FTP SMTP DNS SNMP

SDH GSMATMISDN

NFS

encapPPP ARP

W3C

IETF

ITU
ETSI
ATMF

SCTP

M3UA

IP

Internet

www

TCP UDP

Some protocols in the TCP/IP Suite

SMTP TelnetBGP FTP HTTP

TCP

IP

OSPF RSVPIGMP ICMP

SNMP

UDP

DIAMETER

SCTP

BGP = Border Gateway Protocol

DIAMETER = (2 x RADIUS) = New AAA Protoc

FTP = File Transfer Protocol

HTTP = Hypertext Transfer Protocol

ICMP = Internet Control Message Protocol

IGMP = Internet Group Management Protocol

IP = Internet Protocol

MIME = Multi-Purpose Internet Mail Extension

OSPF = Open Shortest Path First

RSVP = Resource ReSerVation Protocol

SMTP = Simple Mail Transfer Protocol

SNMP = Simple Network Management Protocol

TCP = Transmission Control Protocol

TCP = Transmission Control Protocol

UDP = User Datagram Protocol

Securing the Infrastructure

Applications need complex, reliable protocols

for service discovery, session control,

guaranteeing QoS, etc.

Network control mechanisms and routing

protocols have minimal or no authentication

at all

Infrastructure mechanisms often may not use

IPSec or TLS to secure their operations

AAA Definitions

Authentication

Verifying an identity (distinguishing identifier) claimed

by or for a system entity. This is done presenting

authentication information (credentials) that

corroborates the binding between the entity and the

identifier. (2828)

Entity authentication

Assuring one party (through acquisition evidence) of

the identity of a second party involved in a protocol,

and that the second has actually participated (i.e., is

active at, or immediately prior to, the time the

evidence is acquired).

AAA Definitions

Message authentication

A party is corroborated as the source of specified data
created at some (typically unspecified) time in the
past, and data integrity, but no uniqueness or
timeliness guarantees.

Methods for providing data origin authentication include:

• 1. message authentication codes (MACs)

• 2. digital signature schemes

• 3. appending (prior to encryption) a secret authenticator
value to encrypted text.

A difference btw. entity and msg authentication:

• message authentication provides no timeliness guarantee

• entity authentication implies actual communications with
verifier during execution of the protocol

AAA Definitions

Authorization

An "authorization" is a right or a permission granted to
an entity to access a system resource. An
"authorization process" is a procedure for granting
such rights. (2828) Here: Policy-based. Others: ACL,
capability tokens.

Accounting

The collection of resource consumption data for the
purposes of capacity and trend analysis, cost
allocation, auditing, and billing. Accounting
management requires that resource consumption be
measured, rated, assigned, and communicated
between appropriate parties.

AAAA Definitions

Accountability

The property of a system (including all of its

system resources) that ensures that the

actions of a system entity may be traced

uniquely to that entity, which can be held

responsible for its actions. (2828)

Authentication

(Claimed-ID, Credential)

This makes no sense.

Credentials belong to

claimed-ID, so what?

(Probably I knew that before)

(Claimed-ID, Credential

[Port | IP-Address])

This, alone, makes no sense.

Claimed-ID is now

at port xyz,so what?

In the next message?

({Port | IP-Address | Claimed-ID} ,

Credential, {Req | Msg})

This makes sense.

Claimed-ID is requesting this

or telling that.

In connectionless communication, entity authentication without a meaningful

message other than the claim of being a particular entity makes no sense.

Security Relations

(Claimed-ID, Credential, Req)
How can the router verify the

Credentials and check that

the Req is forn Claimed-ID?

The router has to know

something special about the

Claimed-ID: he has to have a

Security Relation

(pre-established) or obtain one.

Examples:

 Knowledge of the validity of a Public Key (Digital certificates, PKI)

 Shared secret (password, key) Note: in this case the SR is bidirectional

Authentication Credentials

Examples:

• Digital certificates (PKI)

• f(secret key, time-stamp)

• rsp := f(secret key, chall), i.e. responses to Challenges

(Claimed-ID , Credential,

Req)

(Claimed-ID, Req)

(chall)

(resp)

Key Establishment

Protocol whereby a shared secret becomes available to

two or more parties, for subsequent cryptographic use.

Subdivided into

• key transport and

• key agreement

Key transport: one party creates or otherwise obtains a

secret value, and securely transfers it to the other(s).

Key agreement: a shared secret is derived by two (or

more) parties as a function of information contributed

by, or associated with, each of these

Key Establishment

Authentication term Central focus

authentication depends on context of usage

entity authentication
identity of a party, and aliveness at a given

instant

data origin (=msg)

authentication
identity of the source of data (+integrity)

(implicit) key authentication
identity of party which may possibly share a

key

key confirmation
evidence that a key is possessed by some

party

explicit key authentication
evidence an identified party possesses a

given key

Key Agreement -- Properties

(Implicit) Key authentication:

• one party is assured that no other party aside from a
specifically identified second party (and possibly additional
identified trusted parties) may gain access to a particular
secret key.

• independent of the actual possession of such key by the
second party.

Key confirmation:

• One party is assured that a second (possibly unidentified)
party actually has possession of a particular secret key.

Explicit key authentication: both

• (implicit) key authentication and

• key confirmation hold.

Key Agreement -- Properties

Authenticated key establishment

• key establishment protocol which provides key
authentication.

Identity-based key establishment

• identity information (e.g., name and address, or
an identifying index) of the party involved is
used as the party’s public key.

Identity-based authentication protocols may

be defined similarly.

Session Keys

An ephemeral secret, i.e., restricted to a short time

period, after which all trace of it is eliminated.

Reasons:

1. to limit available ciphertext (under a fixed key) for
cryptanalytic attack;

2. to limit exposure, with respect to both time period and
quantity of data, in the event of (session) key
compromise;

3. to avoid long-term storage of a large number of distinct
secret keys (in the case where one terminal
communicates with a large number of others), by
creating keys only when actually required;

4. to create independence across communications sessions
or applications

Key Agreement -Classification

1. Nature of the authentication:

a. entity authentication,

b. key authentication, and

c. key confirmation.

2. Reciprocity of authentication. If provided, entity

authentication, key authentication, and key

confirmation may be unilateral or mutual

3. Key freshness. A key is fresh (from the viewpoint of

one party) if it can be guaranteed to be new, as

opposed to possibly an old key being reused through

actions of either an intruder or authorized party. This

is related to key control

Key Agreement - Classification

4. Key control:

the key is derived from joint information, and neither
party is able to control or predict the value of the key

5. Efficiency.

(a) number of message exchanges
(b) bandwidth (total number of bits)

(c) complexity of computations

(d) precomputation to reduce on-line computational
complexity

Key Agreement - Classification

6. Third party requirements

(a) on-line (real-time),

(b) off-line, or

(c) no third party;

(d) degree of trust required in third party (e.g., trusted to
certify public keys vs. trusted not to disclose long-term
secret keys).

7. Type of certificate used and manner by which initial

keying material is distributed

8. Non-repudiation

some type of receipt that keying material has been

exchanged.

Perfect forward secrecy and known-key attacks

Perfect forward secrecy

• compromise of long-term keys does not compromise past
session keys.

–Previous traffic is locked securely in the past.

–It may be provided by a Diffie-Hellman procedure.

• If long-term secret keys are compromised, future sessions are
subject to impersonation by an active intruder

Immunity to known-key attack: When past session keys are

compromised, do not allow

• Passive attacker to compromise future session keys

• impersonation by an active attacker in the future

(Known-key attacks on key establishment protocols are analogous
to known-plaintext attacks on encryption)

Many types of keys

Sealing key: a shared secret key used for computing

cryptographic checkvalues (MACs)

Signature key: a private key used for signing,

Verification key: a public key used for checking

signatures, or a secret key used for checking MACs

Encipherment key: either secret or public key,

Decipherment key: either secret or private key.

Keys shold be used only for one purpose

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Management Problems: Passwords, Cards,
Tokens

Passwords are

• often shared

• guessable

• written down on pieces of paper

Smart cards and hand-held tokens are

• expensive

• People forget them

• Card readers draw too much power from hand-
helds

Management Problems: WLAN/WEP

WEP is optional,

• many real installations never even turn on
encryption

–irrelevant how good the cryptography is if it is never
used.

By default, WEP uses a single shared key for

all users

• often stored in software-accessible storage on
each device

• If any device is stolen or compromised, change
the shared secret in all of the remaining devices

• WEP does not include a key management
protocol

Is PKI secure? More
Management Problems

Most users don’t know what certificates are.

Most certificates’ real-world identities aren’t checked by

users.

Meaningless Certificates:

• Why should Dow, Jones own the www.wsj.com certificate?

• Is that certificate good for interactive.wsj.com?

Is it NASA.COM or NASA.GOV?

• MICROSOFT.COM or MICR0S0FT.COM?

• What about MICROSОFT.COM? (Cyrillic “O”, do you see it?)

Effectively, we have no PKI for the Web.

DoS Attacks against Authentication Protocols

Flooding attacks: Spoofed messages cause target to
perform expensive cryptographic operations:

Attacker gets the nodes to perform PK operations. It
may spoof a large number of “signed messages” with

random numbers instead of signatures

–Target will verify the signatures before rejecting the
messages.

–Symmetric encryption, hash functions and non-cryptographic
computation are rarely the performance bottleneck (unless the
cryptographic library is optimized only for bulk data)

If a node creates a state during protocol execution, the
attacker may start an excessive number of protocol
runs and never finish them

The stronger the authentication, the easier it may be for
an attacker to use the protocol features to exhaust
target’s resources.

SYN Flooding: Implementation Issues

Host accepts TCP open requests, from spoofed

locations

Half-open connection queue fills up

Legitimate open requests are dropped

Implementation issues

Mostly solved:

• use cheaper data structure for queue,

• random drop when queue is full

Design Problems: WLAN/WEP

Internet

E(m)

E(m) D(E(m))

m

m

No perfect Security

Many different types of Attacks

Many different types of Security Mechanisms

• at different SW layers

• with different strength

Management, Implementation or Design Errors

• Design errors affect more people

Some risks

• may be acceptable (low damage or very low risk)

• too expensive to fully prevent

Authentication Levels

None (no authentication)

• SASL Anonymous [RFC2245]

• Authentication based on source IP address

• Diffie-Hellman

Weak (vulnerable against eavesdroppers)

• FTP USER/PASS

• POP3 USER/PASS

Limited (vulnerable against active attacks)

• One-time Passwords

• HTTP Digest Authentication

• IMAP/POP Challenge/Response

Strong (protection against active attacks)

• Kerberos

• SRP Telnet Authentication

• Public Key Authentication

Variable Security

Different security mechanisms

• variable levels of guarantees

• variable security properties

• variable cost

Challenge:

• find an acceptable level of protection

• at affordable price

Find:

• most inexpensive security mechanisms

–even if they are weak!

• that solve your problem

Attackers

Most are joy hackers.

Soon also Terrorists?

Spies? Governments? Industrial spies?

For profit?

Some businesses report targeted attempts:

• Vendor prices changed on a Web page

• ISP hacked by a competitor

• Customers on pay-per-packet nets targets of
packet storms

Well known Attacks: DOS

Denial of Service Attacks

Attacker doesn’t break in

• he denies you access to your own resources.

Many incidents reported, more are likely.

You lose:

• if it’s cheaper for the attacker to send a message

• than for you to process it

Denial of Service Attacks are hard to prevent

• in particular using security measures at higher layers only

Thumbrules:

• Try to be stateless – allocate resources as late as possible.

• Do expensive computations as late as possible.

• Move heavy computation to the initiator of the protocol run.

DOS Example: “Smurf” Attack

Attacker sends “ping” to intermediate

network’s broadcast address.

Forged return address is target machine.

All machines on intermediate network receive

the “ping”, and reply, clogging their

outgoing net and the target’s incoming net.

Firewalls at target don’t help -- the line is

clogged before it reaches there.

Well known Attacks: Sniffers

Password collection

Credit card numbers

NFS file handle collection

DNS spoofing

Attacks to the infrastructure: Routing Attacks

Routers advertise

• own local nets,

• what they’ve learned from neighbors

Routers trust dishonest neighbors

Routers further away must believe everything

they hear

First solutions in the literature

GSM Today

AV = (chall, resp, C), C = Cipher Key

AV generation is not so fast => batch generation

MS is able to calculate: C = Ck(chall)

Therefore MS and SN share C.

MS authenticates to SN, but SN does not

authenticate to MS

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)

UAS(resp)

LUR

GSM Today: Problem

• If attacker gets hold of one (for instance, used) AV:

– he may create false base station SN’

– force MS to communicate to SN’ (using C)

– decipher/encipher

– use another (legal) user MS’ (with key C’)

• Possible:

– says(A,B,m) /\ notes(C,A,m) /\ C != B

– notes(A,B,m) /\ says(B,A,m’) /\ m != m’

MS’ SNMS SN’
C C’

UMTS: Idee

• MS is able to check that challenge is consistent: consk(chall)

• AVi also contain a sequence number, that may be

reconstructed by the MS: seq = seqk(chall)

• MS accepts AVi only if

seqMS < seqk(chall) < = seqMS +

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)

UAS(resp)

LUR

SynchronFailure

UMTS: Idee

seqMS < seqk(chall) < = seqMS +

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)

UAS(resp)

LUR

SynchronFailure

Is there no MiM Attack?
Is there no deadlock?
Such design errors would be very expensive:

Replace firmware in many towers
and in millions of Cellular Phones

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protoc.: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl):

Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Avispa

http://www.avispa-project.org

U. of Genova,

LORIA-Lorraine,

ETHZ,

Siemens AG

Shared-cost RTD (FET Open) Project IST-

2001-39252

Started on Jan 1, 2003

PBK Construction

Alice sends m1, m2, …, mN,

Bob is able to recognize they have same source

Alice constructs a public/private key pair PBK = (p,s)

Alice disclosed the public key p to Bob along with the initial

packet

Bob verifies messages signed with the private key s=inv(p)

Bob knows the messages were sent by one node

If replay protection: sequence number or timestamp

Is there a cheaper way?

Generalized PBK: Requirements

Bob receives m1, m2, …, mN,

authentically generated by one source

If the first message A B arrives without modification,

all other messages shall be protected in a way that B

recognizes alteration

MiM attack in the first message:

A E B : B is receiving messages from E

But if first message is OK, the system should protect

against MiM

DoS:

If attacker can only insert messages: DoS resilience

1. Hash Construction

If Alice knows in advance which messages she wants to send:

m1, m2, …, mN:

{mi} := <mi , H(mi+1)> (Send mi together with H(mi+1)).

1. Quiz: OK?

No. An attacker can replace {mi} := <mi , H(mi+1)>

by {mi} := <mi , H(i+1)>

And then replace {mi+1} := <mi+1 , H(mi+2)> by

{i+1} := < i+1 , H(i+2)> etc.

{mi} := <mi , H(mi+1, mi+2, …, mN)> 2. Quiz: OK?

I think, yes, this seems easy to prove.

2. Hash Construction

Alice chooses a hash sequence:

h1= H(h2)= H(H(h3))= Hi(hi+1) =.. = HN-1(hN):

{mi} := <mi , H(mi , hi)>

What is wrong? (Too trivial for a quiz!)

Bob has no means to check HAshes.

{mi} := <mi , H(mi , hi), hi > 3. Quiz: OK?

No. Attacker replaces {mi} := <mi , H(mi , hi), hi > by

< i , H(i , hi), hi >

3. Hash Construction

Hash sequence: h1= H(h2)= H(H(h3)) =… = Hi(hi+1) =.. = HN-1(hN)

{mi} := <mi , H(mi , hi), hi-1 >

4. Quiz: OK?

No. Attacker intercepts 2 consecutive messages

{mi} := < mi , H(mi , hi), hi-1 > {mi+1} := <mi+1 , H(mi+1 , hi), hi >

replaces

{mi} by < i , H(i , hi), hi-1 >

Idea: Alice waits for an Acknowledge {acki} := <H(mi , ĥi), ĥi >

(Bob uses seq: ĥ1= H(ĥ2)= H(H(ĥ3)) =… = Hi(ĥi+1) =.. = HN-1(ĥN))

5. Quiz: OK?

I think, yes. Is somebody sure? What is not nice about the solution?

That B is forced to use a hash series, one for each peer. (DoS)

4. Hash Construction

Hash sequence: h1= H(h2)= H(H(h3)) =… = Hi(hi+1) =.. = HN-1(hN)

{mi} := <mi , H(mi , hi), hi-1 >

Alice waits for an Acknowledge {acki} := <H(mi , ĥi), ĥi , H(ĥi+1)>

6. Quiz: OK?

I think, yes. Is somebody sure?

Another idea: instead of acknowledgments, use time frames.

This will work for multimedia. Both A and B divide their time in

intervals: A sends at the beginning of his intervals, B discards

messages that arrive too late.

7. Quiz: Dos that work?

I think, yes. Is somebody sure?

Motivation for the project

There are many techniques for the automatic analysis of

security protocols, BUT

• tools usually come with specific working assumptions
(specification language, security Goals, modelling
assumptions, bounds, . . .)

This makes it very difficult

• to use the tools productively (for the non-expert user) and

• to assess and compare the potential of the proposed
techniques.

Objectives of the AVISPA Project

1. Build a open architecture supporting

a) design of security protocols using a comfortable notation and
web-based user-friendly interface

b) seamless integration and systematic assessment of new
automated techniques for the validation of security protocols.

2. Build and make publicly available a library of formalized

IETF protocols and associated security problems.

3. Develop and tune three promising and complementary

state-of-the-art technologies for automatic formal analysis:

a) On-the-fly Model-Checking

b) Constraint Theorem-Proving

c) SAT-based Model-Checking

Architecture of the AVISPA Tool

Open to other

technologies

High-Level Protocol Specification Language

Intermediate Format

On-the-fly Model-Checker

CL-based Theorem-Prover

SAT-based Model-Checker

On-the-fly Model-Checking

Context: On-the-fly model checking supports the

incremental exploration of very large or infinite state

systems. Lazy evaluation in languages like Haskell

provides a powerful platform for building flexible,

efficient search engines.

Approach: Lazy evaluation is combined with symbolic

(unification-based) methods to build on demand, and

explore, the protocol search space.

Advantages:

• Declarative specification of infinite data structures,
reduction methods, and heuristics.

• Modular design, easy integration of
heuristics/improvements.

Constraint Theorem-Proving

Context: Rewrite-based, first-order theorem provers have

recently appeared as very effective tools for equational

reasoning. daTac combines rewriting with constraints to

handle properties such as associativity/commutativity.

Approach: Messages exchanges and intruder activities can

be directly translated into rewrite rules. Searching for

an attack amounts to deducing a contradiction.

Advantages:

• Protocol representation is simple and intuitive.

• Advancements in deduction can be easily incorporated.

• Fast prototyping of model enhancements (e.g. algebraic
properties of operators).

SAT-based Model-Checking

Context: Dramatic speed-up of SAT solvers in the last

decade:

• Problems with thousands of variables are now solved

routinely in milliseconds.

Approach: Bounded model-checking of security protocols

based on a constructive translation of the IF into SAT

with iterative deepening on the number of steps.

Advantages:

• Most of the generated SAT instances are solved in

milliseconds.

• Declarative.

• Plug and play integration of different SAT solvers

• Improvements of SAT technology can be readily exploited.

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Internet History

1961: Kleinrock - queueing

theory shows effectiveness

of packet-switching

1964: Baran - packet-

switching in military nets

1967: ARPAnet conceived by

Advanced Research

Projects Agency

1969: first ARPAnet node

operational

1972:

• ARPAnet demonstrated
publicly

• NCP (Network Control
Protocol) first host-host
protocol

• first e-mail program

• ARPAnet has 15 nodes

1961-1972: Early packet-switching principles

Internet History

1970: ALOHAnet satellite

network in Hawaii

1973: Metcalfe’s PhD thesis

proposes Ethernet

1974: Cerf and Kahn -

architecture for

interconnecting networks

late70’s: proprietary

architectures: DECnet, SNA,

XNA

late 70’s: switching fixed

length packets (pre ATM)

1979: ARPAnet 200 nodes

Cerf and Kahn’s

internetworking principles:

• minimalism, autonomy - no
internal changes required to
interconnect networks

• best effort service model

• stateless routers

• decentralized control

define today’s Internet

architecture

1972-80: Internetworking, new and proprietary nets

Internet History

1983: deployment of TCP/IP

1982: SMTP e-mail

1983: DNS name-to-IP-address
translation

1985: FTP

1986, Jan: first IETF meeting 21
attendees

1986, Oct: 4th IETF, first IETF
with non-government vendors

1987, Feb: 5th IETF: Working
Groups were introduced

1987, Jul: 7th IETF, > 100
attendees

1988: TCP congestion control

New national networks: Csnet,
BITnet, NSFnet, Minitel

100,000 hosts connected to
confederation of networks

1993 July: IETF met in
Amsterdam, first IETF meeting
in Europe

US/non-US attendee split was
(+is) nearly 50/50.

1980-1990: new protocols, a proliferation of
networks

Internet Organizations

ISOC (Internet Society)
political, social, technical aspects of the Internet

http://www.isoc.org/

IAB (Internet Architecture Board)
oversight of Internet architecture and standards process;

liaisons with e.g. ITU-T, ISO
http://www.iab.org/iab/

IETF

(Internet Engineering Task Force)
standardizes Internet protocols;

open community for engineers,

scientists, vendors, operators
http://www.ietf.org/

IRTF

(Internet Research

Task Force)
pre-standards R&D

http://www.irtf.org/

IETF

Proceedings of each IETF plenary

Meeting minutes,

working group charters (which include the working group
mailing lists),

are available on-line see www.ietf.org.

• 3 meetings a year.

– working group sessions,

– technical presentations,

– network status reports,

– working group reporting, and

– open IESG meeting.

IETF Current Areas

Applications (APP) - Protocols seen by user programs, such as e-

mail and the Web

Internet (INT) - Different ways of moving IP packets and DNS

information

Operations and Management (OPS) Administration and

monitoring

Routing (RTG) - Getting packets to their destinations

Security (SEC) - Authentication and privacy

Transport (TSV) - Special services for special packets

User Services (USV) - Support for end users and user support

organizations

General (GEN) - Catch-all for WGs that don't fit in other areas

(which is very few)

IETF procedures

The IETF is a group of individual volunteers (~ 4 000
woldwide)

Work is being done on mailing lists (plus 3
meetings/year)

No formal membership, no formal delegates

Participation is free and open

>110 working groups with well defined tasks and
milestones

Major US vendors dominate the IETF

IETF does not decide about the market, but:
the approval of the IETF is required for global market
success.

Protocol design is done in working
groups

Basic Principles

• Small focused efforts preferred to larger comprehensive ones

• Preference for a limited number of options

Charter

• Group created with a narrow focus

• Published Goals and milestones

• Mailing list and chairs' addresses

"Rough consensus (and running code!)"

• No formal voting (IESG decides)

• Disputes resolved by discussion and demonstration

• Mailing list and face-to-face meetings

Consensus made via e-mail

• (no "final" decisions made at meetings)

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Kerberos

An authentication

system for

distributed systems

Introduction

Based on Needham - Schroeder

Three-Party Protocol

Extensions according to Denning - Sacco.

Developed at MIT as part of the project Athena

Versions 1 - 3 internal

Currently the following Kerberos Version are published:

• Kerberos v4

• Kerberos v5

Kerberos v5 Clarifications/Revisions (not finished)

Three Party Protocols

Y. Ding and H. Petersen: "Eine Klassifikation von Authentifikationsmodellen",
Proc. Trust Center'95, DuD Fachbeiträge, 292 - 302, 1995.

Nonce-based Protocol

Timestamp-based ProtocolKerberos

Kerberos in three Acts

AS+
KDC

SrvReq

({tt}k, {A,B,ttmax,k}B)
A B

AuthRsp({k}A, {A,B,ttmax,k}B)

AS+
KDC

SrvReq

({k}B)

AReq(A,B)

A B

ARsp({k}A, {k}B)

({tt}k, {k}B)

• Drawback: User

has to re-type

password for every

new service ticket

request

• Solution: Ticket

Granting Ticket

AS TGS
KDC

Kerberos Single-Sign-On

Obtaining additional tickets

• Don't want to present user's password each time the user
performs authentication with a new service

• Caching the user's password on the workstation is dangerous

• Cache only tickets and encryption keys (collectively called
credentials) for a limited period, typically ~8 hours

When the user first logs in, an authentication request is issued

and a ticket and session key for the ticket granting service

is returned by the authentication server

A special ticket, called a ticket granting ticket, is used to

subsequently request a session key with a new verifier

The TGT may be cached

Complete Kerberos

Protocol
< client communicate with AS to obtains a ticket for access to TGS >
1. Client requests AS of KDC to supply a ticket in order to

communicate with TGS.
- request (C, TGS) C : client id

2. AS returns a ticket encrypted with TGS key(Kt) along with a session
key Kct.
- return = ({ticket}Kt, {Kct}Kc Kct : TGS session key
- ticket = (C, TGS, start-time, end-time, Kct) Kc : client key

< client communicate with TGS to obtain a ticket for access to other server >
3. Client requests TGS of KDC to supply a ticket in order to communicate with order server.

- request = ({C, timestamp}Kct, {ticket}Kt, S) S: server key
4. TGS checks the ticket, If it is valid TGS generate a new random session key Kcs.

TGS returns a ticket for S encrypted by Ks along with a session key Kcs.
- return = ({ticket}Ks, {Kcs}Kct) ticket = (C, S, start-time, end-time, Kcs)

< client communicate with the server to access an application >
client decrypt {Kcs}Kct with Kct to get Kcs.
client generate authenticator A with the information from ticket.
- A = ({C, S, start-time, end-time, address}Kcs)

5 . Client sends the service request to the server along with the ticket and A.
- ({ticket}Ks, {C, S, start-time, end-time, address}Kcs, request

6. The server decrypt ticket using Ks and check if C, S, start, end times are valid
If service request is valid, use Kcs in the ticket to decrypt authenticator
Server compares information in the ticket and in the authenticator. If agreement, the service

request accepted.

AS TGS

Client Server

KDC

1
2

3

4

5

6

(from: B. C. Neuman + T. Ts’o: IEEE Communications Magazine SEP. 1994)

Kerberos Entities

Kerberos Key Distribution Center (KDC) consists of

• Kerberos Authentication Server (AS)

• Kerberos Ticket Granting Server (TGS)

• KDC supplies tickets and session keys

Realm

• Kerberos Administrative Domain that represents a group of
principals

• A single KDC may be responsible for one or more realms

Principal

• Name of a user or service

• Principal Identifier: Unique identity for a principal
(service/host@realm_name)

• Example: krbtgt/SYSSEC.UNI-KLU@SYSSEC.UNI-KLU

The Kerberos Ticket

A Kerberos Ticket contains of two parts:

• Unencrypted part

• Encrypted part

Fields of the unencrypted part:

• Version number for the ticket format

• Realm that issued a ticket

• Server identity

Fields of the encrypted part:

• Flags

• Key

• Client name/Client realm

• Transited

• Start-time, End-time, Renew-till

• Host addresses and authorization data

Example: Service Ticket

Service Ticket is

encrypted with the

secret key of the

service S.

The ticket itself does

not provide

authentication. This

is the responsibility

of the

Authenticator.

Session

Key k(a,s)

User@Realm

Service Request for

Service S

Time

Stamp

Network

Address

Lifetime

Key(s)

Comparison Kerberos V4/V5 (1/3)

Limitations with V4 Improvements with V5

Weak Timestamp
mechanism

Nonce-based replay protection with
KRB_PRIV and KRB_SAFE. Replay
protection for the client in the AS and
TGS msgs.

No authentication
forwarding

Right delegation via forwardable and
proxiable tickets

Reuse of “session keys”
possible

No reuse possible, real session keys
for KRB_PRIV and KRB_SAFE
messages with sub-keys in AP_REQ

Flawed DES in cipher-block
chaining mode

Standard DES in CBC mode

The AS and TGS response msgs are not double-encrypted in Krb V5 => U2U Auth.

Comparison Kerberos V4/V5 (2/3)

Limitations with V4 Improvements with V5

Limitations with principal
naming

Less restrictions with a multi-component

principal naming

Available for IP only Multi-protocol support introduced

Cross-realm authentication

requires n*(n-1)/2 keys

between communicating realms

Hierarchy of realms introduced.

Only DES encryption algorithm

available (export restrictions)

Generic interface supports several

algorithms, still limitations exist

Problems with the Kerberos V4

pseudo-random number

generator used for the session

key generation (2^56 ->

2^20)

Problems fixed in Kerberos V5

Comparison Kerberos V4/V5
(3/3)

Limitations with V4 Improvements with V5

Sender encodes messages
in his native format.

Messages are described and encoded

with the ASN.1 syntax.

No batch processing

support for tickets

available.

Batch processing available with the

help of postdated tickets.

Limited ticket

lifetime(~21h)

Time format based on NTP -> very

long lifetime

Weak message

digest/checksum routines

(CRC-32)

Several message digest routines

available

No support for handheld

authenticators (One-time

Passwords)

Support added via the pre-

authentication data field

Limitations with V4

Improvements with V5

Kerberos V4 Cross-Realm Authentication

Ticket Flow

Client's Realm

Server's Realm

TGT

Request/

Reply

Client
Server

Service

Ticket

Request/

Reply

Service

Request/Reply

lKDC

rKDCCross-

Realm

 Ticket

Request/

Reply

R
e
p

ly
:

{T
ic

k
e
t}

k
(l

tg
s
)

R
e
p

ly
:

{T
ic

k
e
t}

k
(r

tg
s
)

Reply: {T
icket}k

(s)

inter-realm key

Request: {Ticket}k(s)

Kerberos V4 Cross-Realm

Realm navigation does
not assume a realm-
structure.

KDC must share a inter-
realm key with all
neighboring realms it
wants to communicate
with.

Scalability problems due
to the complex key
distribution.

Realm A

Realm C

Realm D

Realm B

Inter-Realm Key

A-B, B-A

Inter-Realm Key A-C, C-A

In
te

r-R
e
a
lm

 K
e
y

B
-C

, C
-B

In
te

r-
R

e
a
lm

 K
e
y

 B

-D
,
D

-B

Inter-Realm Key

C-D, D-C
In

te
r-

R
e
a
lm

 K
e
y

A
-D

,
D

-A

Kerberos V5 Cross-Realm Improvement

Hierarchical structure

may be used.

Consulting a database

is an alternative

The client and the

KDC run the same

algorithm to

determine the

authentication

path.

Short-cuts limit the

number of

requests.

Realm

UNI-KLU

FINANZ.UNI-KLU SYSSEC.UNI-KLU

Realm Realm Realm

OEH.UNI-KLU

 STUDENT.SYSSEC.UNI-KLU STAFF.SYSSEC.UNI-KLU

Realm Realm

In
te

r-R
ealm

 K
ey

In
te

r-
R

e
a
lm

 K
e
y Inter-R

ealm
 K

ey

Inter-Realm KeyInter-Realm Key

Short-Cut
In

te
r-R

e
a
lm

 K
e
y

Kerberos V5 Cross-Realm Authentication

The sequence of realms used in the authentication process is
referred as the authentication path.

The client determines the authentication path by using a
realm-naming convention similar to the DNS naming
convention. The server runs the same algorithm but he may
return a TGT that is closer to the final realm (if available).

Example:

• Client located at STUDENT.SYSSEC.UNI-KLU

• Server located at FINANZ.UNI-KLU

• Required TGTs:

–krbtgt/STUDENT.SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU

–krbtgt/SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU

–krbtgt/UNI-KLU@SYSSEC.UNI-KLU

–krbtgt/FINANZ.UNI-KLU@UNI-KLU

The transited path is the list of realms that were actually used
to obtain the current ticket.

Kerberos V5 Ticket Types

Initial Ticket

• Indicates that this ticket is the result of a initial authentication.

• Used for ticket issued by the KDC and not by the TGS.

• Required by some programs (e.g. password changing programs)

• Gives the assurance that the user has typed in his password
recently.

Invalid Ticket

• Validated by the KDC in a TGS request.

• Often used with postdated tickets

Postdated Ticket

• Purpose: Request a ticket for later use I.e. batch jobs

• Invalid until the start ticket has been reached

• Ticket must be sent to the KDC to convert it to a valid one.

Kerberos V5 Ticket Types

Renewable Ticket

• Used for batch jobs.

• Ticket has two expiration dates.

• Ticket must be sent to the KDC prior the first expiration to renew it.

• The KDC checks a “hot list” and then sends a new ticket with a new

session key back.

Proxiable Ticket

• Makes it possible for a server to act on behalf of the client to perform a
specific operation. (e.g. print service)

• Purpose: granting limited rights only

Forwardable Ticket

• Similar to proxiable ticket but not bound to a specific operation

• Mechanism to delegate user identity to a different machine/service

• Sample application: telnet

Where is Kerberos used?

Architecture:

PacketCable

Operating Systems:

Unix

Windows 2000 for all authentication procedures

Windows CE .NET

Protocols (examples):

Resource Reservation Protocol (RSVP)

Telnet; NFS; FTP; SNMP; TLS; KINK; DNS

APIs / Carriers for Authentication Protocols

GSS-API; SASL; EAP;

AAA (Diameter) for MobIP V4

HAFA

MN

Home DomainVisited Domain

AAA-H
AAA-V

1. Agent advertisement + Challenge

2. Registration Request 7. Registration Reply

3. AA-Mobile-Node-Request

4. Home-Agent-MobileIP-Request

5. Home-Agent-MobileIP-Answer

6. AA-Mobile-Node-Answer

8. Registration Request

9. Registration Reply

(8. + 9. Auth. with extensions:

MN-FA-, MN-HA-,FA-HA-Auth)

7‘. Now there are SA:

MN-FA, MN-HA, FA-HA

What is IPSec?

IPSec is the standard suite of protocols for network-

layer confidentiality and authentication of IP packets.

IPSec = AH + ESP + IPComp + IKE

In particular the following features are provided:

• Connectionless integrity

• Data origin authentication

• Replay Protection (window-based mechanism)

• Confidentiality

• Traffic flow confidentiality (limited)

An IPv6 standard compliant implementation must

support IPsec.

Insecured Messages vs. Secured Messages

IP Spoofing

Session hijacking

Man-in-the-middle

Eavesdropping

Message modification

IPHdr Payload

IPHdr

Fields

Source

IPAdd

Dest

IPAdd

TCP

Hdr

Appl

Hdr

Appl

Payload

Tunnel mode:

the whole package is being

encapsulated

in a new package

IPHdr Payload

Neuer

IPHdr

IPSec

Hd

IPHdr Payload IPSec

Trailerencrypted

Transport mode (less expensive)

new IPSec Header (+ evtl Trailer)

provides somewhat less security

IPSec

Hd

IPHdr IPSec

Trailer

Payload

encrypted

Use of IPSec: Tunnel Mode

Secured messages

in an insecure

environment

Neuer
IPHdr

IPSec
Hd

IPHdr Payload IPSec
Trailerencrypted

Insecured messages

in an secure

environment

IPHdr Payload

IPHdr Payload

Why IPSec?

Users want a secure, private network by

• disallowing communication to untrusted sites,

• encrypting packets that leave a site,

• authenticating packets that enter a site.

By implementing security at the IP level, all distributed applications can

be secured (including many security-ignorant, legacy applications).

Typically, the following threats are prevented:

• Impersonation (IP Spoofing);

• Session hijacking;

• Man-in-the-middle Attacks;

• Injecting or re-ordering of IP packets

• Eavesdropping;

• Message modification

Tunnel Mode

Tunnel Mode

Tunnel mode has an

“outer IP header” and

“inner IP header”

• AH protects part of

the outer header as well

Authentication is between remote

host and firewall (or Security

Gateway), or between two

firewalls

User has access to entire internal

network (VPN)

IPHdr Payload

Neuer

IPHdr

IPSec

Hd

IPHdr Payload IPSec

Trailerencrypted

Firewall /

Security Gateway

Corporate

Network

Roaming

User

Internet

Site A Site B

Internet

IPsec Tunnel

IPsec Tunnel

Transport vs. Tunnel Mode

Transport Mode

no additional header to the IP

packet.

Authentication Header (AH) offers

no confidentiality protection

but protects parts of the IP

header.

Encapsulating Security Payload

(ESP) provides confidentiality

protection.

Transport mode must be host to

host

• adequate for upper layer

protocols

• Gateways cannot handle

fragmentation or multiple routes

Hosts share a secret key

IPSec

Hd

IPHdr IPSec

Trailer

Payload

encrypted

IPSec SA

A Security Association (SA) is a data structure. The SA

provides the necessary parameters to secure data. SAs can

be established manually or dynamically (e.g. IKE).

An IPsec SA is uniquely identified by:

• Security Parameter Index, SPI (32 bit)

• Destination IP Address

• Protocol (AH or ESP)

IPsec SAs can support:

• Transport mode

• Tunnel mode

How to establish IPSec Security
Associations?

Default Key Management Protocol:

The Internet Key Exchange Protocol (IKE)

Alternatives:

• Kerberized Internet Negotiation of Keys (KINK)
(see http://www.ietf.org/html.charters/kink-
charter.html)

• IKEv2 (SON-of-IKE)

• Host Identity Payload (HIP)
(http://homebase.htt-consult.com/HIP.html;
http://homebase.htt-consult.com/draft-moskowitz-hip-05.txt)

–HIP adds new namespace and provides a protocol for
IPsec ESP SA establishment – not fully conformant to IPsec

Internet Key Exchange (IKE)

ISAKMP Phases and Oakley Modes

• Phase 1 establishes an ISAKMP SA

–Main Mode or Aggressive Mode

• Phase 2 uses the ISAKMP SA to
establish other SAs

–Quick Mode

–New Group Mode

Authentication with

• Signatures

• Public key encryption

–Two versions

–Based on ability to decrypt, extract a
nonce, and compute a hash

• Pre-shared keys

Four of the five Oakley groups

AggressiveMain

New Group

Quick

No SA

Ph 1

Ph 2

IKE states (simplified)

modes and phases

Diffie-Hellman

k = Yx mod p = (gx)y mod p = (gy)x mod p = Xy mod p =k

The parameters g and p are typically known to all communication partners.

choose g,p
generate x
compute

X=gx mod p

X [,g,p]

generate y
compute
Y=gy mod p

Y

A B

Denial of Service (Flodding)

choose g,p

generate

random numbers:

Xi , i =1.. n
Xi [,g,p]

generate yi
compute Yi = gyi (p)

Yi

A B

DOS:

•Exponentiation: computationally expensive

•B: Memory allocation

•A: IP spoofing to prevent traceability.

Dos Protection (Cookies)

X=gx mod p CA, CB, X [,g,p]

Y=gy mod p
CA, CB, Y

A B
choose CA

CA

choose CB

CB

Return routability proof:

A has to have seen CB to send the next msg

If A spoofs Addi it has to sit on path Addi --B

Close to Addi : not many active addresses

Close to B

IKE: Cookies

If A uses repeatedly same Address:

Same cookie: B discards

Different cookies: A must wait

Problem remains:

Unauthenticated key-exchange:

man-in-the-middle

X=gx mod p CA, CB, X [,g,p]

Y=gy mod p
CA, CB, Y

A B
choose CA

CA

choose CB

CB

Authenticated Key Exchange

A B

Y=gy mod p
CA, CB, Y

X=gx mod p CA, CB, X [,g,p]

choose CA

CA

choose CB

CB

CA, CB, {IDA, …}PSKey,k

CA, CB, {IDB, …}PSKey,k

If A and B share a key PSKey then they may use it, together with k
(the D-H result) to encrypt and authenticate the ID (and other param).

Main Mode for shared key: Negotiation,
Key Derivation

A B

CA, CB, X [,g,p], NA

CA, ISAA

CA, CB, Y, NB

CB, ISAB

CA, CB, {IDA}PSKey,k

CA, CB, {IDB}PSKey,k

SKey = hPSKey(NA | NB)

{IDA}PSKey,k = (IDA | HashA)

ISAA, ISAB are ISAKMP SA Data, used by IKE to negotiate:

encryption algorithm

hash algorithm

authentication method
The negotiated parameters pertain only to the ISAKMP SA

and not to any SA that ISAKMP may be negotiating

on behalf of other services.

SKeyd = hSKey(k | CA | CB | 0)

SKeye = hSKey(SKeyd | k | CA | CB | 2)

SKeya = hSKey(SKeyd | k | CA | CB | 1)

HashA = hSKeya
(X | Y | CA | CB | ISAA | IDA)

IKE (5): Key Derivation

Properties:
•IKE uses a key derivation procedure without a hierarchy.
•Key derivation provides key material of arbitrary length for the individual keys
(encryption keys, integrity keys, IVs, etc. for different directions).

•The same key derivation routine is used to create an ISAKMP and an IPsec SA.

PRF
Parameters

Layer 0

T1 T2 Tn

T1 T2 Tn|| || ||...Derived Key DK :=

KeyKeyKey

PRFPRF

Internet Key Exchange (IKE) Summary
(1/2)

Phase I

• The two peers establish a secure channel for
further communication by negotiating ISAKMP
SAs.

Phase II

• Protected by the SA negotiated in Phase I, the
peers negotiate SAs that can be used to protect
real communication; that is, the IPsec SA.

Internet Key Exchange (IKE) Summary
(2/2)

IKE defines two Phase I modes:

• MAIN MODE gives authenticated key exchange with identity
protection.

• AGRESSIVE MODE gives quicker authenticated key exchange
without identity protection.

For Phase I, IKE defines (for main and aggressive modes) four

different authentication methods:

• 1. authentication with digital signatures;

• 2. authentication with public key encryption;

• 3. authentication with a revised mode of public key encryption;
and

• 4. authentication with a pre-shared key.

IKEv2 – What’s new? (1/2)

Number of authentication modes reduced : Only one

public key based and a pre-shared secret based

method

Establishes two types of SAs (IKE-SA and Child-SAs)

User identity confidentiality supported

• Active protection for responder

• Passive protection for initiator

Number of roundtrips are reduced (piggy-packing SA

establishing during initial IKE exchange)

Better (optional) DoS protection

NAT handling covered in the core document

IKEv2 – What’s new? (2/2)

Legacy authentication and IPSRA results have been

added to the core document.

This allows OTP and other password based

authentication mechanisms to be used

To support legacy authentication a two-step

authentication procedure is used.

Traffic Selector negotiation improved

IPComp still supported

Configuration exchange included which allows clients to

learn configuration parameters similar to those

provided by DHCP.

EC-groups supported

IPsec: Firewall to Firewall

Implement VPNs over the Internet.

Deployment already in progress; may some day

largely replace private lines.

Caution: still vulnerable to denial of service

attacks.

IPsec: Host to Firewall

Primary use: telecommuters dialing in.

Also usable for joint venture partners, clients,

customers, etc.

But today’s firewalls grant permissions based

on IP addresses; they should use certificate

names.

IPsec: Host to Host

Can we manage that many certificates?

Can servers afford it?

Can today’s hosts protect their keys?

Limits to IPsec

Encryption is not authentication; we must still control

access.

• Firewalls can’t peek inside encrypted packets

Traffic engineers want to look inside packets, too.

New techniques for handling unusual links -- satellite

hops, wireless LANs, constant bit rate ATM, etc. --

require examining, replaying, and tinkering with

packets.

NAT boxes incompatible with end-to-end IPsec.

Use key recovery technology?

IPsec: IP security

Issues for IKE update (only minor corrections):

• NAT/Firewall traversal

• SCTP

Proposals for IKEv2 features/simplifications (new version):

• remote access

• dead-peer detection

• client puzzles for DoS protection

• remove most of the authentication methods

• remove perfect forward secrecy

• only one phase

• backwards compatibility

• …

Much discussion and several sets of proposals related to

IKEv2

Network Access Example

NAS

Password =? Pwd(ID)
Auth-Ack / Auth-Nak

User

Generate random
Challenge

PAP

CHAP

(ID, response) response = h(Challenge, Pwd(ID)
Auth-Ack / Auth-Nak

Authenticate-Request
(ID, Password)

User

Server

Random number

Shared
secret

Shared
secret

h h

=?

Challenge

Response

Wireless Environments

Traditional network access procedures are not

well suited for wireless environments.

Hence wireless network have to use different

mechanism.

What about the security of IEEE 802.11?

IEEE 802.11 Background

WEP (Wired Equivalent Privacy)

• Goal was: protection equivalent to the protection granted by wired LAN

• Secret key is shared between AP and all stations (40 or 104 Bit)

• Authentication based on Chall/Resp, but not mandatory

• No key distribution mechanisms

• WEP was developed behind closed doors

–as opposed to widespread practice today

Link layer security

• WEP key consists of Initialisation Vector (IV) concatenated with shared
key

• IV is 24 Bit long, no rules about usage

• Encryption is based on RC4 (a stream cipher)

–Generates an "endless" key stream

–Key stream is bit-wise XORed with plaintext

–General Rule: never use key stream twice, but: 24 Bit revolves
quickly

Wireless Equivalence Privacy (WEP)
Authentication

Challenge
(Nonce)

Response (Nonce RC4 encrypted
under shared key)

MN AP
Shared secret distributed out of

band

Decrypted nonce OK?

802.11 Authentication Summary:

• Authentication key distributed out-of-band

• Access Point generates a “randomly generated” challenge

• Station encrypts challenge using pre-shared secret

WEP Encryption

Secret Key

Initialization

Vector (IV)

Plaintext PDU

Data

seed
| |

Key Sequence

CRC-32

Integrity Check

Value (ICV)

RC4
PRNG

| |

Ciphertext

IV

Message

WEP in brief:

Sender and receiver share a secret

key k.

Recipient:

Use the transmitted iv and k to generate K = rc4(iv,k)

<m',c'> := C K =ifOK= (M K) K = M

 If c' = c(m'), accept m' as the message transmitted

m

To transmit m:

c(m)

Compute a checksum c(m), append to m:

M = (m | c(m))

K (keystream)

Pick iv, and generate a keystream

K := rc4(iv,k)
iv C (ciphertext)

ciphertext = C := M K

Transmit (iv | ciphertext)

Attacks involving keystream reuse
(collision)

If m1 and m2 are both encrypted with K,

 C1 C2 = m1 K m2 K
= m1 m2

 intruder knows of two plaintexts!

Pattern recognition methods:
know m1 m2 recover m1, m2.

K = rc4(iv,k).

k changes rarely and shared by all users

Same iv same K collision

iv cleartext intruder can tell when collision happens.

There are 2^24, (16 million) possible values of iv.

50% chance of collision after only 4823 packets!

Cards reset iv to 0 on each activation (then iv++): low iv
values get reused often

m c(m)

K (keystream)

iv C (ciphertext)

Decryption Dictionaries

pings, mail intruder knows one pair ciphertext and the

plaintext for some iv.

C := M K he knows K = M C .

Note that he does not learn the value of the shared secret k.

He stores (iv, K) in a table (dictionary).

This table is 1500 * 2^24 bytes = 24 GB

The next time he sees a packet with iv in the table, he

can just look up the K and calculate M = C K

size of the table depends only on the number of different

iv you see.

It doesn't matter if you're using 40-bit keys or 104-bit

keys

If the cards reset iv to 0, the dictionary will be small!

Message “Authentication” in WEP

The checksum algorithm used is CRC-32

CRC's detect random errors; useless against

malicious errors:

•It is independent of k and iv

•It is linear: c(m D) = c(m) c(D)

Message Modification

Assume IV and C are known to intruder .

Intruder wants the

receiver to accept fake message

F = m d

for some chosen d

($$ in a funds transfer)

D := (d | c(d)), then (C D) = K (M D)

C' := C D transmit (iv,C') to the receiver.

Receiver checks:

C' K = C D K = M D = <F, c(F)>

OK!

m c(m)

K (keystream)

iv C (ciphertext)

Message Injection

Assume: Intruder

knows a plaintext,

and corresponding encryption

(pings or spam provide this)

The encrypted packet is (iv,C),

plaintext is (m | c(m)),

intruder computes

K = C (m | c(m)).

Now he can take any message F, compute c(F), and

compute

C' = <F,c(F)> K .

Transmits (iv,C').

m c(m)

K (keystream)

iv C (ciphertext)

Message Injection

Note that we only used that the CRC does not

depend on the key. The attack would work

just as well if the CRC were replaced by, say,

SHA-1.

The Authentication Protocol

AP sends challenge

The client sends back the challenge, WEP-

encrypted with the shared secret k

AP checks if the challenge is correctly

encrypted

Intruder: has now both the plaintext and the

ciphertext of this challenge!

Authentication Spoofing

Once intruder sees a

challenge/response pair for a

given key k, he can extract iv and K .

Now he connects to the

network himself:

• AP sends
a challenge m' to intruder

• Intruder replies with iv, <m',c(m')> K

• This is in fact the correct response, so AP accepts intruder

• Without knowing k

m c(m)

K (keystream)

iv C (ciphertext)

Message Decryption

Intruder can trick AP into decrypting the packet, and

telling him the result :

Double-encryption

IP Redirection

Reaction attacks

m c(m)

K (keystream)

iv C (ciphertext)

Reaction Attacks

Assume the packet to be decrypted is a TCP packet

Do not need connection to the Internet

Use the fact: TCP checksum invalid => silently dropped

But if the TCP checksum on the modified packet is

correct, ACK

We can iteratively modify a packet and check if the TCP

checksum valid

Possible to make the TCP checksum valid or invalid

exactly when any given bit of the plaintext message is

0 or 1

So each time we check the reaction of the recipient to a

modified packet, we learn one more bit of the plaintext

Attacking the WEP Algorithm

Passive attacks

• Eavesdropping packets with same IV yields XOR of two (or
more) plaintexts and allows conclusions about plaintext

• Eavesdropping packets with "special IVs" allows to reconstruct
the WEP key (=> Airsnort attack)

Active attacks

• Injecting know plaintext packets from the Internet
(packet sent with selected IV for a known key stream)

–Allows to decrypt all packets with same IV

–Allows to encrypt own plaintext with same IV

–Allows to built a lookup table for many (all) IVs (space required for all
IVs ~15GB)

• Authentication possible without knowledge of the key
(Known plaintext attack - challenge / response)

IEEE 802.11 Security weaknesses

The properties provided by IEEE 802.11 do not meet today’s

security objectives

The missing user identification and the non-existing

appropriate key management makes it difficult to detect

unusual activity.

Authentication is based on the MAC address and not on the user

identity.

Mutual authentication not provided (false base-station attacks

possible)

No keyed message digest used

40-bit RC4 key length too short for today's application (because

of US export restriction)

Too short Initialization Vector (24 bits)

Known (and partially known) plain-text attacks possible

Current Status of WLAN Security

802.11 Task Group i deals with enhanced security for 802.11 WLANs

Standard expected for end 2003

Short-term solution: TKIP (Temporal Key Integrity Protocol)

• Idea: reuse existing hardware by software-/firmware-update only

• 128 bit key, 48 bit Extended IV, IV sequencing rules (~10^10 years)

• Key mixing function (creates new seed for RC4 for each packet)

• New Message Integrity Code

Authentication and key management: 802.1X "Port-based access

control"

• Mutual authentication between STA and backend authentication server

• Establishment of individual per-session keys between STA and AP

Long-term solution: AES-CCMP (AES-Counter-Mode/CBC-MAC protocol)

• Robust security solution

• Requires new hardware

WEP Security: Lessons

WEP designers selected well-regarded

algorithms, such as RC4

But used them in insecure ways

The lesson is that security protocol design is

very difficult

• best performed with an abundance of caution,

• supported by experienced cryptographers and

security protocol designers

• and tools!

IEEE 802.1X Security Properties

Support flexible security framework based on EAP (RFC

2284) and RADIUS

Enable plug-in of new authentication, key management

methods without changing NIC or Access Point

Enables customers to choose their own security solution

Can implement the latest, most sophisticated

authentication and key management techniques with

modest hardware

Enables rapid response to security issues

Per-session key distribution

IEEE 802.1X Security Properties

Enables use of Kerberos v5 for authentication

Allows fine-grain authorization:

• Authorization can include bandwidth limits,
Virtual LAN, QoS, etc.

User-based identification

• Identification based on NAI (Network Access
Identifier, RFC 2486)

• Allows cross-realm access in public places

Receives wide support in the industry

• 3Com, Intel, HP, MERIT, Microsoft, Nortel, Cisco

EAP Architecture

The Extensible Authentication Protocol

PPP 802.
*

SIP / HTTP

ICMP

TLS OTP GSS-API SRP
UMTS
AKA

Kerberos V5 IAKERB, SPNEGO, SPKM, SRPGM, …

Link Layer

Radius/
Diameter

UDP
Transport Layer

Application Layer

IEEE 802.1X EAP/Radius Conversation

EAPOL-Start

EAP-Response/Identity

Radius-Access-Challenge

EAP-Response

Access blocked
Port connect

Radius-Access-Accept

EAP-Request/Identity

EAP-Request

EAP-Success

Radius-Access-Request

Radius-Access-Request

RADIUSEAPOL

Purpose of Digital Certificates

Scalability

Trusted validation of parties

Transmission and storage of public keys can

be insecure

Can provide permissions (Authorizations)

X.509 is part of the ITU-T Directory series of

recommendations (= ISO/IEC 9594).

The minimal Public Key Certificate

A data structure that binds

a subject

a public key

PKCertificate :: =

{

Subject Name
Subject Public Key

Signature

}

Binding done by trusted CA:

verifies the subject’s

identity

signs the certificate

X.509 Public Key Cert V.1

PKCertificate :: =

{

Version = 0 (“1”)

Serial Number

Signature AlgorithmID

Issuer

Validity (Lifetime)

Not Before

Not After

Subject Name

Subject Public Key

AlgorithmID

Key value

Signature

}

AlgorithmID is a pair:

encrypt + hash (+ opt. parameters)

Version 1 from 1988

To uniquely identify cert. Never reused

X.500 DN of CA, e.g., {C=de, S=..,

O=Comp}
YYMMDD; HHMM{SS}: “Y2K problem”

Format of certificate is ASN.1

DER (Direct Encoding Rules) produces octets for transmission

(Single) Certificate Validation

Check the Certificate Integrity

Validity Period

Key Usage and Applicability according to

policies

Certificate Status

How do I Verify this Certificate?

Alice wants me to believe that she owns

a certain public key PK.

Issuer Subject NameSubject PubKey Signature

AliceCA1 of CA1PK

For that, she presents me a Certificate,

issued by her company “CA1”.

But who is that company, “CA1”?
Is CA1 trustworthy?

Is “Signature of CA1” really the signature

of CA1?

Path Construction and Path Discovery

Issuer Subject Name Subject PubKey Signature

AliceCA1 of CA1

Issuer Subject Name Subject PubKey Signature

CA1CA2 of CA2

Issuer Subject Name Subject PubKey Signature

CA2
CAT of CAT

Issuer Subject Name Subject PubKey Signature

CATCAT of CAT

Easy, in hierarchical PKIs, If not: may need construct several paths

CA Hierarchy and Cross-Certification

Cross Certificate

Alice

Certificate Authority

Certificate User

Certificate CA

CACACA

CA CA

CACA

Verify the Certificate: Path Validation

Issuer Subject Name Subject PubKey Signature

AliceCA1 of CA1

Issuer Subject Name Subject PubKey Signature

CA1CA2 of CA2

Issuer Subject Name Subject PubKey Signature

CA2
CAT of CAT

CATCAT of CAT

Issuer Subject Name Subject PubKey Signature

Relying on a trusted/local copy of the root certificate:

prove by induction : Issuer owns the claimed PubKey,

CA2 , CA1 trustworthy.

Check Lifetime, Policies and Revocation Lists

X.509 Public Key Cert V.2

PKCertificate :: =

{

Version = 1
Serial Number

Signature AlgorithmID

Issuer

Validity (Lifetime)

Not Before

Not After

Subject Name

Subject Public Key

AlgorithmID

Key value

Issuer Unique ID

Subject Unique ID

Signature

}

Version 2 from 1992

To uniquely identify Issuer

To uniquely identify Subject

There may be several “Trustme-Cert

Inc.” worldwide,

or several “Bob Hope” in our company

If “Bob Hope” leaves our company and a

new “Bob Hope” is hired,

how to make sure that the new one does

not inherit the old authorizations?

Nobody uses that. There are better solutions.

X.509 Public Key Cert V.3

PKCertificate :: =

{
Version = 2
Serial Number
Signature AlgorithmID
Issuer

Validity (Lifetime)
Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Extensions
Extension1

Extension2

Signature

}

Version 3 from 1998

UCTTime: YYMMDD: If YY < 50 then add

2000

else add 1900

OR

Generalized Time: YYYYMMDD

Standard extensions for: KeyID,

Key usage intention / restriction,

subject/issuer alternate names or

attributes
(DNS name, email addr., URL, IP addr.)

policies

certification path

Private Extensions also possible

Key Usage

KeyUsage ::= BIT STRING {

digitalSignature (0),

nonRepudiation (1),

keyEncipherment (2),

dataEncipherment (3),

keyAgreement (4),

keyCertSign (5),

cRLSign (6),

encipherOnly (7),

decipherOnly (8) }

X.509 Public Key Certificate V.3

PKCertificate :: =

{
Version = 2 (“3”)
Serial Number
Signature AlgorithmID
Issuer

Validity (Lifetime)
Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Extensions
Extension1

Extension2

Signature

}

Fields: Type

(critical | non critical)

value

Issuer does not only check your identity,

it also checks what you are allowed

Size of cert (say, in wireless applications)

Do not need all extensions always

More extensions => faster to revocate

Problems:

X.509 Attribute Cert V.1 (current)

AttrCertificate :: =

{

Version = 0 (“1”)
Serial Number
Signature AlgoID
Issuer + IssuerID
Validity (Lifetime)
Subject

Subject Name
or
Base Certificate

Issuer
Serial Nr.

Attributes
Extensions

Signature

}

No field for a public Key

May have different CA from PKCert

different lifetime (shorter)

authorization information

role, etc.

Not (yet?) in wide use

Generalized Time: YYYYMMDD

Other Extensions

Basic constraints

• Identifies whether the certificate subject is a CA;

• how deep a certification path may exist through
that CA.

Name constraints (only for CA certificates)

• Indicates name space within which all subject
names in subsequent certificates in a
certification path must be located.

Certificate management

Certificate management covers:

• the responsibilities and actions of the Certification Authority,

• the ‘certification process’,

• distribution and use of certificates,

• certification paths,

• certificate revocation.

Two parallel sets of standards cover interactions between

users and a CA:

• IETF RFCs 2510/2511

• ISO/IEC 15945.

IETF leads the way - ISO/IEC has adopted proposals of RFCs.

The Certification Authority

The CA is responsible for:

• identifying entities before certificate generation

• ensuring the quality of its own key pair,

• keeping its private key secret.

The CA, before generating a certificate, checks that a

user

• knows the corresponding private key to its claimed public
key.

On keeping those commitments depends the notion of

trust

What is an End Entity?

X.509v3 certificates are used by protocols such as
S/MIME, TLS and IKE, when authentication requires
public keys.
(End Entity = Natural Person)

When two routers or security gateways or servers, etc.
wish to communicate, they exchange certificates to
prove their identity

• thus removing the need to manually exchange public keys
or shared keys with each peer

• End Entity = Router, Printer, Gateway, Server, Device

• The certificate provides the equivalent of a digital ID card
to each device.

Basic model: basic protocols --
Simplified User‘s View

certification
revocation

request

"out-of-band„
publication

"out-of-
band„
loading

cert.
publish

CRL
publish

ID: 12 34 56 78Company XYZ

Name
ABCDEFG

Smart card
stores keys Certification

Authority

Directory server
stores public keys as

X.509 certificates

Certification
Authority

Registration
Authority

cross-certification

cross-certificate
update

initial registration
certification

key pair recovery
certificate update
key
enrolment

key
enrolment

Recall: Purpose of Digital Certificates

Scalability: get public keys only when really needed

Trusted validation of parties: by induction, I believe

party is who he claims to be (erroneously: "trust is

transitive")

Transmission and storage of public keys can be

insecure:

replace storing securely many keys with:

• store insecurely many certificates

• store securely the root certificate

• store securely the private key

Can provide permissions (Authorizations): later

Basic model: basic protocols --
Simplified User‘s View

ID: 12 34 56 78Company XYZ

Name
ABCDEFG

Secured applications client e.g.
 Encrypted e-mail
 Encrypted web-access
 E-commerce using certificates
 VPN authentication using certificates

Secured application servers, e.g.
 Encrypted e-mail
 Encrypted web-access
 E-commerce using certificates
 VPN authentication using certificates

Need all:

Secure

networks,

services,

applications, and

devices

Reasons for Revocation

Compromise of subject’s private key

Change in subject name

Change in Authorizations in Cert

Change of subject’s affiliation

Violation of CAs policies

Compromise of CAs private key

Termination of entity, etc.

Need to inform all users by some

means.

Note: Revocation before expiry!

Certificate Revocation List, Version 2
(current)

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}Stored on CA,

directory service or

OSCP (Online Cert Status Prot) server

Time-stamped

and frequently updated

Rate may vary according to security

of the transaction (say, 4 times a day)

Must be scheduled regardless of

change in status

Signed by CA

• List of revoked
certificate’s serial

numbers

Distribution of CRLs

Push
Broadcast

Reliable transport

Bandwidth Intensive

Who needs them?

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}

On-line status checking
Client initiated

On-line query

Info available 24 x 7

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}

?

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}

Polling
Client polls according to

advertised interval

CA or directory server can be

polled

Black hole between revocation

and next scheduled update

Problems

PDAs, Cellular Phones, Laptops:

• Intermittent Network Access

• Low communication Bandwidth

• Low Computational Power

Ideally:

• Connect for a short time, download messages, SW, etc

• Validate Certificates

• Proceed with off-line operations

• But:

• Need Public Keys

• Path Discovery, Verification

How to check revocation status?

Options from PKIX

• OCSP (Online certificate status protocol)

• OCSP with extensions:

– Delegated Path Validation (DPV)

– Delegated Path Discovery (DPD)

• DPD or DPV are also possible without OCSP

• Simple Certificate Verification Protocol (SCVP)

Online certificate status protocol

OCSP, RFC 2560, enables certificate status to be queried.

• The protocol specifies data exchanged between entity checking
certificate status and the T3P providing that status.

OCSP may provide more timely revocation information than is
possible with CRLs.

Entity issues status request to T3P and suspends acceptance
of certificate until T3P gives response. (Some seconds, not
real-time)

Client sends list of cert ids to a responder

Responder returns status for each:

• Good (simply means that responder has no record of the cert’s
revocation)

• Revoked

• Unknown (responder has no knowledge of the cert)

(Version 2 fixes the way cert ids are sent)

DPD: Delegated Path Discovery

For clients that don’t want to do build a complete cert chain

• Memory or bandwidth constraints

Client request parameters:

• On the path construction

–Trust anchors

–Name constraints

–Name forms

• Validation Parameters

–Type of revocation status info (CRL or OCSP)

Responder builds a chain for the client:

• Client sends cert id

• Responder builds and returns chain - does not validate

Why DPD but no DPV? Client does not trust the responder

DPV: Delegated Path Validation

For clients that don’t want to do validate a

complete cert chain

• CPU, memory or bandwidth constraints

• Central policy management

Responder builds chain (but does not return)

and gives status of cert sent as for OCSP

Client can specify trust points through which

chain must be built

Client completely trusts the responder, but

• Can use signed response for non-revocation

Issue: trust delegation

SCVP

The amount that the responder does can be varied

• Client can offload all processing to the SCVP server

• Client can just use SCVP for chain building

Client sends up complete certs and what it expects:

• TypesOfCheck

–tells the server what types of checking the client expects the
server to perform on the on the query item(s).

• WantBack

–tells the server what the client wants to know about the query
item(s).

TLS Sub-Protocols

TLS

Application

TCP

Handshake

Alert CCS

Record

TLS Handshake Overview

Ciphers:

• RSA, DSS, and DH

• Elliptic curves, Kerberos, and Fortezza

• RC4, DES, 3DES, IDEA

RC4 is the default encryption algorithm

• Lots of old 40-bit software around

• Very weak.

HMAC MD5 or HMAC SHA-1 are the common

MAC

The TLS Handshake Protocol

hello request B A : ()
sent by the server at any time, simple notification that the client

should begin the negotiation process anew by sending a client
hello

This message should not be included in the message hashes which
are used in the finished messages and the certificate verify
message.

client hello A B : A; Na; Sid; Pa

nonce Na, called client random,
session identifier Sid. The model makes no assumptions

about the structure of agent names such as A and B.
Pa is A's set of preferences for encryption and

compression;
both parties can detect if Pa has been altered during
transmission (using the message hashes in finished
messages and the certificate verify message).

The TLS Handshake Protocol

server hello B A : Nb; Sid; Pb

nonce Nb (called server random).
Same session identifier
Pb his cryptographic chice, selected from Pa.

server certificate B A : certificate(B;Kb)

The server's public key, Kb, in a cert signed by a trusted CA

Server key exchange message B A : gy

sent by the server only when the server certificate message does
not contain enough data to allow the client to send a PMS. This
message (may) contain the DH parameter of B "gy", for
calculating the PMS. (Another variant, not discussed here)

The TLS Handshake Protocol

certificate request B A : certificate_types,

certificate_authorities

server hello done B A : ()

client certificate* A B : certificate(A; Ka)

either client key exchange A B : gx

or encrypted premaster secret A B : {PMS}Kb

certificate verify* A B : SigKa (Hash {Nb; B;

PMS})

Optional messages are starred (*)
In certificate verify, A authenticates herself to B by signing HAsh

of some relevant messages to the current session.
Paulson: Important only to hash Nb, B and PMS.

The TLS Handshake Protocol

M = PRF(pre_master_secret, "master secret",

Client_random + Server_random)

Both parties compute the master-secret M from PMS, Na and Nb

finished A B : PRF(M, "client finished" ,

hash(handshake_messages))

finished B A : PRF(M, "server finished" ,

hash(handshake_messages))

The TLS Handshake Protocol

According to the TLS specification, client hello does not
mention the client's name. But server needs to know
where the request comes from; in practice gets this
information from TCP. That it is not protected and
could be altered by an intruder.

The master secret is hashed into a sequence of bytes,
which are assigned to the MAC secrets, keys, and non-
export IVs required by the current connection state:

• a client write MAC secret,

• a server write MAC secret,

• a client write key,

• a server write key,

• a client write IV, and

• a server write IV

The TLS Handshake Protocol

The symmetric client write key is intended for

client encryption, while server write key is

for server encryption; each party decrypts

using the other's key.

Once a party has received the other's finished

message and compared it with her own, she

is assured that both sides agree on all

critical parameters, including M and the

preferences Pa and Pb.

Only now she may begin sending

confidential data.

The TLS Handshake Protocol

The TLS specification erroneously states that

she can send data immediately after sending

her own finished message, before

confirming these parameters;

• An attacker may have changed the preferences
to request weak encryption.

• This is exactly the cipher-suite rollback attack,
which the finished messages are intended to
prevent.

• TLS corrects this error.

The TLS Handshake Protocol

For session resumption, the hello messages

are the same.

After checking that the session identifier is

recent enough, the parties exchange

finished messages and start sending

application data.

Each party has to store the session parameters

after a successful handshake and look them

up when resuming a session.

Session resumption does not involve any new

message types.

Certificates, CAs, Browsers, and Servers

Many CAs’ certificates pre-loaded with the

browser:

• ATT, VeriSign, …

• Can be viewed in the browser, e.g.,

–Navigator 6: tasks, security and privacy, security
manager

User surfs to

https://www.mystockbroker.com/

Browser connects to port 443, sends nonce

and gets back servers’ cert & nonce

Certificates, CAs, Browsers, and Servers

Browser verifies cert; encrypts a pre-master
secret with server’s public key

• Process works if everyone is careful
–Some browsers come with 100+ CAs’ certs; easy to mistake the name

–Some CAs may be unreliable

–Pre-master secret may be predictable

–Certificates expire and signatures may not check

–Virus may corrupt either party

Rest of the communications are protected

• Server asks for password, credit card #, tax ID
#, etc.

–Sometimes servers get hacked and all customers’ secrets get
published

• And there’s a lot of old “40-bit” software around

Personal Certificates and Client-Side
Authentication

Clients (browsers) can have certificates too

• CA signs client’s public key

• Obtained from well-known CAs:

–VeriSign, ATT, MCI, …

–Costs and policies vary

• Can be viewed in the browser, e.g.,

–options, security, personal certificates

• Two-way strong security

–No server access to user’s secret

–Good security but not widely used

–Most secure web sites ask client for a simple password (encrypted)

–Worse, most secure Web sites only secure the “payment screen”

TLS Limitations

In all cases, have to trust other party’s CA

• Usually not even aware of the choice

• How can you trust 115 CAs?

Password or credit card authentication allows unlimited guessing

Systems on both sides may get hacked or infiltrated with untrusted

code

For efficiency reasons, most screens are not protected

Inherent back-end security target

• Many exposures, examples

No non-repudiation and huge dispute rates

• Netscape introduced “form signing” on navigator 4.04

• Not supported by Explorer

No convenient “wallet” software

Using TLS

Warning screen from a secure page:

https://www.somewheresecure.com

TLS Architecture

Handshake Alert
Change
Cipher
Spec

Application
• The Change Cipher Spec protocol

consists of a single message that
is sent by both the client and
server to notify the receiving
party that subsequent data will
be protected under the newly

negotiated Ciphersuite and keys.

• The Alert protocol specifies the
TLS alert messages.

• The Record Layer provides the encapsulation of the upper layer data.
The data is fragmented, optionally compressed, a MAC is appended,
and data and MAC are encrypted. Each transport connection is
assigned to a unique TLS session.

Record Layer

Reliable Transport

Reliable Transport

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa

contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl):

Syntax, Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

The basic Model: Alice, Bob, Intruder

Well-known in network security world

Alice + Bob want to communicate securely (privately, without

modifications)

Alice and Bob are “roles”

Intruder may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Intruder

Syntax: Roles as trace Predicates

Think of a module or “role” as a formula Alice(n;x,y)

Analogy: think of p(n,x,y) a FOL formula, like (x > y+n)

Alice(n;x,y) is not talking about single values of variables, (like

p does), but about traces (sequences of values).

As you may write ξ sat p(n,x,y) (sat is usually written “ |= ”),

for instance (2,10,4) sat (x > y+n)

You can also write τ sat Alice(n;x,y) for instance

((1,0,0), (1,1,0), (1,1,0), (1,1,8), (1,8,8), …)

sat (x=y=0 □ (x’ ≠ x y ≤ x’ ≤ y’ +1))

Syntax: Variables, Predicates

Set of vars V={x,x1,x2,x3,y,y1, …} called state variables

(each of a determined type),

construct a copy of them called primed variables

{x',x1',y', …}

FOL predicates with free vars in V are called state

predicates

and predicates with free vars in V united V' are called

transition predicates

st_pred, tr_pred

(x=y=0) is a state predicate

(x’ ≠ x y ≤ x’ ≤ y’ +1)) is a transition predicate

Syntax: Events, Stuttering

Transition predicates of the form

(t(x) ≠ t(x')) N(x,x') where x is a tuple of variables

are called events. Events exclude stuttering (x=x')

x'=x+1 is not an event (syntactical criteria) but it

excludes stuttering. It is equivalent to the event

x'≠x x'=x+1

Note that the disjunction of events is wlog also an event

rewirting:

(t(x) ≠ t(x')) N(x,x')) (s(x) ≠ s(x')) M(x,x'))

((t,s)(x) ≠ (t,s)(x')) (N M)(x,x'))

Syntax: TLA Normal Form

A TLA formula in normal form is:

… st_pred □ ((event tr_pred) (event tr_pred) …)

Our hlpsl is close to this TLA form

Note: conjunction of TLA normal forms is (wlog) normal form

Conjuction is parallel composition of modules (roles)!

Two types of variables:

flexible variables (state of the system)

rigid variables (parameters, constants, may be instantiated at some

point later)

TLA Example

V={x,y}

Let Prg(x) = (x=0) □ (x'≠x x'=x+1)

Then the following traces are in Tr(Prg):

(0,3), (0,4), (0,5), (0,6), (0,7), …

(0,3), (1,4), (2,5), (3,6), (4,7), …

(0,0), (1,1), (2,2), (3,3), (4,4), …

(0,0), (0,1), (1,2), (1,3), (2,4), …

If a TLA program talks about variable x only, it does not say anything

about variable y.

All traces of Prg are generated by the following "symbolic trace":

(0,*), (1,*), (2,*), (3,*), (4,*), …

by:

take a prefix (including all)

introduce any number of x-stuttering steps,

repeat (x0,*) any number of times (even infinite)

replace the do-not-cares "*" by any values of y

hlpsl Example

Prg(x) = (x=0) □ (x'≠x x'=x+1)

Using a signal “Trigg”:

Role Prg(Trigg,x) :=

Owns x

Init x = 0

Trans
Trigg x’ = x +1

The var x is modified only by Prg, but

it may seen outside.

Prg

Trigg

x

TLA Example

V={x,y}

Let Prg(x) = (x=0) □ (x'≠x x'=x+1)

Let New(x,y) := Prg(x) Prg(y)

Exercise: What are the traces of this

program?

TLA Example, modelling channels

V={sec:{0,…59} ,min :{0,…59},hr :{0,…11} }

Sec := (sec'≠sec), etc. Events

Clock: = A B C

A := (sec = 0) □ (Sec sec’ = sec +1 (mod 60)

 Sec sec’ = 0 Min)

B := (min = 0) □ (Min min’ = min +1 (mod 60)

 Min min’ = 0 Hr)

C := (hr = 0) □ (Hr hr’ = hr +1 (mod 12))

A B C

Sec
Min Hr

hrminsec

hlspl Example, the clock

Clock: = A B C

Role A(Sec,sec,Min) :=

Init sec = 0

Trans Sec sec’ = sec +1 (mod 60)

Sec sec’ = 0 Min

A B C

Sec
Min Hr

hrminsec

Implementing the clock with local variables

Who owns the minutes?

Separate Min + min, etc

Redefine Min := v_Min’

≠v_Min

Role A(Sec,sec,Min) :=

Owns sec, Min

Init sec = 0

Trans Sec sec’ = sec +1

Sec sec’ = 0 Min

A = (sec = 0) □ (Sec sec’ = sec +1
 Sec sec’ = 0 Min
 sec ≠ sec’ = 0 Sec
 Min Sec sec’ = 0)

A B C

Sec
Min Hr

hrminsec

Types of Channels

role A (p; v, channels: channel

(dy|secure|ota|…)) :=

…

end role

Basic Roles: Semantics

role Basic_Role (…) :=

owns {θ: Θ}

local {ε}

init Init

accepts Accept

transition

event1 action1

event2 action2

…

end role

Trigg(Basic_Role) := event1 event2 … %% This is also an event!

Init(Basic_Role) := Init

Accept(Basic_Role):= Accept(A) Accept(B) Accept

Mod(x,Basic_Role) := {eventi | x’ ocurrs in actioni (or in a LHS channel val)}

Step(Basic_Role) := Trigg(Basic_Role) (event1 action1) (event2 action2) ...

TLA(Basic_Role) := ε { Init □ [(event1 action1) (event2 action2) ...

 (_(θΘ) θ‘≠ θ Mod(θ,Basic_Role))] }

Basic Roles: Semantics

role A (…) :=

owns {θ: Θ}

local {ε}

init Init

accepts Accept

transition

event1 action1

event2 action2

…

end role

Trigg(A) := event1 event2 … %% This is also an event!

Init(A) := Init

Accept(A):= Accept

Mod(x,A) := {eventi | x’ ocurrs in actioni (or in a LHS channel val)}

Step(A) := Trigg(A) (event1 action1) (event2 action2) ...

TLA(A) := ε { Init □ [(event1 action1) (event2 action2) ...

 (_(θΘ) θ‘≠ θ Mod(θ,A))] }

Basic Roles: Semantics

role A (…) :=

owns {θ: Θ}

local {ε}

init Init

accepts Accept

transition

event1 action1

event2 action2

…

end role

Trigg(A) := event1 event2 … %% Also event!

Init(A) := Init

Accept(A):= Accept

Mod(x,A) := {eventi | x’ ocurrs in actioni
(or in a LHS channel val)}

Step(A) := Trigg(A)

(event1 action1) (event2 action2) …

TLA(A) := ε { Init □ [

Trigg(A) Step(A)

 (_(θΘ) θ‘≠ θ Mod(θ,A))] }

Note:

Step(A) (event1 action1) (event2 action2) …

TLA(A) = ε { Init □ [

(event1 action1) (event2 action2) …

 (_(θΘ) θ‘≠ θ Mod(θ,A))] }

Semantic of Composed Roles: modular
approach

A B = Composition(A,B):

Parallel, Sequential (+taking ownership, hiding)

IF-Programs hlpsl-Programs TLA-Formulas

IF(A) , IF (B) A , B TLA(A) , TLA(B)

IF(A) IF (B) A B TLA(A) TLA(B)

For Parallel composition:

TLA(A) TLA(B) = TLA(A) TLA(B) extra_glue (for ownnership)

Semantic of Composed Roles:
flattening approach

A B = Composition(A,B):

Parallel, Sequential (+taking ownership, hiding)

flatten: hlpsl-Programs hlpsl-Programs

For basic roles: flatten(A) = A

For composed roles: flatten(A B) = arrange(flatten(A),flatten(B))

Composed Roles: Parallel

role Par_Role (parameters; variables, channels) := % Parallel Composition of A and

B

owns {θ:Θ}

local {ε}

init Init

accepts Accept

A B

end role

Trigg(Par_Role) := Trigg(A) Trigg(B)

Init(Par_Role) := Init(A) Init(B) Init

Accept(Par_Role) := Accept(A) Accept(B) Accept

Mod(x,Par_Role) := Mod(x,A) Mod(x,B)

TLA(Par_Role) := ε { Init A B

 □ [(_(θΘ) θ‘≠ θ Mod(θ, Par_Role))] }

Composed Roles: Seq

role Seq_Role (parameters; variables, channels) := %Sequential Composition of A and B

owns {θ:Θ}

local {ε}

init Init

accepts Accept

A ; B

end role

Trigg(Seq_Role) := (flag = 0 Trigg(A)) (flag = 1 Trigg(B))

Init(Seq_Role) := flag = 0 Init(A) Init

Accept(Seq_Role) := Accept(B) Accept

Mod(x,Seq_Role) := (flag = 0 Mod(x,A)) (flag = 1 Mod(x,B))

TLA(Seq_Role) := ε,flag {Init(Seq_Role)

 □ [(Trigg(A) flag=0) (Trigg(B) flag=1)

(flag' ≠ flag => flag' = 1

 Accept_A’

 Init_B')

Example: Share protocol

k = hash(Na.Nb)

choose Na
sent it encrypted

withPK of B
{Na}PK(B)

choose Nb
sent it encrypted
withPK of A

{Nb}PK(A)

A B

hlpsl: Share: basic roles

role Initiator(A,B, PK: agent -> public_key; SND, RCV: channel (dy)) :=

exists St:{0,1,2}, Na:text (fresh), Nb:text

init St=0

transition

St=0 RCV(start) St'=1 SND({Na'}PK(B))

St=1 RCV({Nb'}PK(A)) St'=2 secret(hash(Na,Nb’))

goal

secrecy % of hash(Na,Nb)

end goal

end role

role Responder(A,B, PK: agent -> public_key; SND, RCV: channel (dy)) :=

exists St:{0,1,2}, Na:text, Nb:text (fresh)

init St=0

transition

St=0 RCV({Na'}PK(B)) St'=1 SND({Nb'}PK(A)) secret(hash(Na’,Nb’))

goal secrecy end goal

end role

Explicit secrecy goals

Needham-Schroeder Public Key Protocol
(NSPK): Alice

role Alice (A,B: agent,

Ka, Kb: public_key,

SND,RCV: channel (dy)) played_by A def=

exists State : nat, Na : text (fresh), Nb: text

init State=0

knowledge(A) = { inv(Ka) }

transition

step1. State=0 /\ RCV(start) =|> State'=1 /\ SND({Na'.A}Kb)

step2. State=1 /\ RCV({Na.Nb'}Ka) =|> State'=2 /\ SND({Nb'}Kb)

end role

played_by

knowledge

start message to signal an initiator that he should start

step1 and step2 are merely labels

NSPK: Bob

role Bob(A: agent,

Ka, Kb: public_key,

SND,RCV: channel (dy)) played_by B def=

exists State : nat, Na: text, Nb: text (fresh)

init State=0

knowledge(B) = { inv(Kb) }

transition

step1. State=0 /\ RCV({Na'.A}Kb)

=|> State'=1 /\ SND({Na.Nb'}Ka)

step2. State=1 /\ RCV({Nb}Ka)

=|> State'=2

end role

NSPK: Composing the roles

role NSPK(S,R: agent -> channel (dy),

Instances: (agent,agent, public_key,public_key) set) def=

exists A, B: agent, Ka, Kb: public_key

composition

/_{in((A,B,Ka,Kb),Instances)}

Alice(A,B,Ka,Kb,S(A),R(A))

/\ Bob(A,B,Ka,Kb,S(B),R(B))

end role

NSPK: Sessions and Goals

role Environment() def=

composition

NSPK([(a,s_a),(b,s_b)], % S

[(a,r_a),(b,r_b)], % R

[(a,b,ka,kb),(a,i,ka,ki)]) % Instances

end role

goal

Alice weakly authenticates Bob on Nb

Bob weakly authenticates Alice on Na

secrecy of Na, Nb

end goal

Share: goals

1. A->B: {NA}k(B)

2. B->A: {NB}k(A)

Agents will use h(NA,NB) as shared key.

The authentication goals

A authenticates B on NB (or on (NA,NB))

and

B authenticates A on NA (or on (NA,NB))

are trivially violated:

1. i(a) -> B: {X}k(B)

2. B -> i(a): {nb}k(A)

Now B believes (X,nb) is the shared key between a and him, while a is

not even present.

Not a "real" attack:

• intruder does not find out the nonce nb

• and can never use the shared key

Share

Also execution of B is stuck: nobody except B knows the

shared key, nobody can send messages with this key.

Same problem with the first-phase of IKE: intruder can

play a MiM, but can not find out the key and the

protocol execution is stuck, no second-phase protocol

can be executed.

Protocol does not satisfy the authenticate goal:

when B receives the first message of the protocol, he can

not be sure that it actually comes from A.

A must prove her presence by sending a message

encrypted with the key h(NA,NB).

Share

See this part of protocol as a challenge, add the response:

1. A->B: {NA}k(B)

2. B->A: {NB}k(A)

3. A->B: {0,..}h(NA,NB)

4. B->A: {1,..}h(NA,NB)

“0”, “1” inserted to distinguish the two messages

then intruder can not simply reflect this message 3 from A

back to A

New goals:

A authenticates B on NA,NB,MA

B authenticates A on NA,NB,MB

secrecy of NA,NB,MA,MB

“Incomplete Protocols”

"the key-exchange phase of the protocol does

not YET provide the authenticate itself, but

rather after the first use of the key the

agents authenticate each other."

We found no further attacks on SHARE.

We have taken SHARE (with the additional

messages 3 and 4) as an example and could

verify (within seconds!) secrecy and weak

authentication (in a typed model for an

unbounded number of sessions and agents).

List of Protocols

SHARE

UMTS-AKA 3GPP

ISO Pub Key wout T3 Party

ChapV2 AAA

EKE cat,sasl,NWWG

SRP cat,sasl,NWWG

EKE2

SPEKE

ASW

AAA-MobileIP mobileip

IKEv2 main mode ipsec

Two-Party RSA Sig Schemes

TLS

TWSS Liberty

Kerberos krb-wg

HIP HIP

Mut Auth for low-power dev

TESLA MSEC

sucv mobileip

BU in IPv6 mobileip

TLS tls

SSH secsh

Key-Priv in Pub-Key Encr PKIX

Payment in UMTS 3GPP

CMS Symmetric Key Mang smime

SET

FairZG

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa

contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl):

Syntax, Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

IP mobility

MN moves from one IP address to another

• moves between network coverage areas or media types,

• its logical point of network access changes, or

• a whole subnetwork moves (not covered in MobileIP).

Mobility protocols

• maintain existing connections over location changes

• ensure that MN can be reached at its new location.

Location management = mechanism for informing other
nodes about MN's current address. Approaches:

• a directory service where MN's location is maintained or

• direct notifications to the nodes that need to know about
the new location.

Mobility Management

Visited Domain

LR HA

Home Domain

Two addresses:
• HoA: home address (fixed: to identify MN)
• CoA: care-of address (to locate MN)

that changes at each new pt of attachment.

How are such „Bindings“ created / modified?

CN
Correspondent Node

Home Agent
Leaf

Router

Mobility Management

LR HA

Triangular Routing
Binding Update (BU):

Route optimization

CN

Security Problems

LR HA

Attacker may redirect the traffic:
MiM
DoS (starving, flodding, boming)

CN

X

IP V6

Adress size increased from 32 to 128 bits.

Auto-configuration to generate locally CoA:

Routing prefix MAC Address

• 64-bit routing prefix, which is used for

• routing the packets to the right network

• 64-bit interface identifier,

• which identifies the specific node

• can essentially be a random number.

Mobile IPv6

MN is identified by a home IP address (HoA)

IP addresses in MIPv6 can identify either a node or a
location on the network, or both.

Home agent (HA, a router)

• acts as MN's trusted agent and

• forwards IP packets between MN's correspondent nodes
(CN) and its current location, the care-of address (CoA)

The MIPv6 protocol also includes a location
management mechanism called binding update (BU).

MN can send BUs to CN and HA to notify them about the
new location so that they can communicate directly

MN may also be triggered to sending a BU when it
receives a packet from a new CN via HA.

Binding Update

MN and HA have a permanent trust relationship and a

preconfigured security association for encrypted and

authenticated communication.

MN informs HA about its location via this secure tunnel.

MN and its HA can cooperate to send BUs to CNs, with

which they often have no preexisting relationship.

CN stores the location information in a binding cache

entry, which needs to be refreshed regularly by

sending a new BU.

Threats

Misinform CN about MN’s location

• Redirect packets intended for MN

–compromise of secrecy and integrity

–denial-of service (MN unable to communicate).

Attacker sending bogus BUs may use own address as CoA,

impersonating MN.

• highjack connections between MN and its CNs or

• open new ones.

Or redirect packets to a random or non-existent CoA (DOS).

• MN has to send a new BU every few minutes to refresh the

binding cache entry at CN.

the attacker can make any node believe that any other node,

even a non-MN one, is MN and has moved to the false CoA.

• Side effect of making mobility transparent.

Replay Attacks

Time stamps would be problematic because

MNs may not be able to maintain sufficiently

accurate clocks.

Sequence-numbered BUs, on the other hand,

could be intercepted and delayed for later

attacks.

A nonce-based freshness mechanism seems

practical because many related

authentication and DoS protection

mechanisms use nonces anyway.

Why not IPSec, IKE, and PKI?

BU authentication: could use strong generic
authentication mechanisms and
infrastructure: IPSec, IKE, and PKI.

Overhead too high for low-end mobile devices
and for a network-layer signaling protocol.

Internet mobility protocol should allow anyone
to become MN and it must allow all Internet
nodes as CNs.

• A single PKI must cover the entire Internet.

Cryptographically Generated Addresses
(CGAs)

Take last 64 bits of the IP address (interface identifier)

as one-way hash of a PK. MN signs its location

information with the corresponding private key and

sends the PK along with the data.

The recipient hashes the public key and compares HAsh

to the address before verifying the signature on the

location data.

Used without any trusted third parties, PKI, or other

global infrastructure.

Weakness: at most 64 bits of the IP address can be used

for Hash. Perhaps brute force attack will become

possible during the lifetime of MobIPv6.

CGAs

Strong signature key generation expensive, but weak

signature keys may be used.

Advances in storage technology may enable the attacker

to create a large enough database for finding matching

keys at high probability.

CGA do not stop the attacker from inventing new false

addresses with an arbitrary routing prefix. The

attacker can generate a public key and a matching IP

address in any network. Thus CGA addresses prevent

some packet-flooding attacks against individual

addresses but not against entire networks.

Public-key protocols (including CGA) are computationally

intensive and expose the participants to DoS.

Routing-based authentication

Idea: send 1st message through a relatively safe route

(hope it is not intercepted).

• Here: Route between CN and HA.

• CN can send a secret key to HA (plaintext).

HA forwards key to MN (secure tunnel),

MN uses key for authenticating a BU to CN:

• MN CN: BU with MAC (computed with secret key).

HA

CN

Routing-based authentication

Reasonable: very few Internet nodes can listen to or modify

packets on the right routers to mount an attack against a

given connection.

• At most 10-20 routers see the secret keys for a specific

connection

Not secure in the classical sense

• But much better than unauthenticated situation.

HA and CN are typically located on the wired network and

communication is relatively secure compared to the packets

to and from a wireless MN.

• An attacker between MN at home and a CN can mount equally

damaging attacks

• Recall that the goal is to address the additional threats created by

mobility

Weaker than CGA

Sending 2 Pieces of Authentication Data

Other proposals for BU authentication:

Send 2 pieces of authentication data between

CN and MN via 2 independent routes and

hoping that most attackers are unable to

capture both of them.

HA

CN

Leap-of-faith authentication

MN sends a session key insecurely to CN at the

beginning of their correspondence and the

key is used to authenticate subsequent BUs,

no safe route.

• Attacker can send false key before the MN sends
the key

• Need a recovery mechanism for situations where
MN or CN loses its state; attacker can exploit this
mechanism

• Attacker can trigger the BU protocol at any time
by sending to MN's home address a spoofed
packet that appears to come from CN

Another DoS

Authentication does not prevent the attacker from lying about

its own location.

Attacker acts as MN, sends false location data to CNs and get

them to send traffic to an arbitrary IP address.

It first subscribes to a data stream (e.g. a video stream from a

public web site) and then redirects this to the target

address.

Bomb any Internet node or network with excessive amounts

of data.

• Attack an entire network by redirecting data to a nonexistent
address and congesting the link toward the network.

The attacker may even be able to spoof the (say TCP)

acknowledgements

Another DoS (cont)

The attacker performs the TCP handshake itself and thus knows the

initial sequence numbers. After redirecting the data to the target, it

suffices to send one spoofed ack per TCP window to CN.

TCP provides some protection against this attack:

• If the target address belongs to a real node, it will respond with TCP Reset,
which prompts CN to close the connection.

• If target is a non-existent address, the target network may send ICMP
Destination Unreachable messages. Not all networks send this latter kind
of error messages.

The attack is not specific to MIPv6:

• Dynamic updates are made to Secure DNS, there is no requirement or
mechanism for verifying that the registered IP addresses are true.

• ICMP Redirect messages enable a similar attack on the scale of a local
network. We expect there to be other protocols with the same type of
vulnerability.

Variation: Bombing HoA

Im MIPv6 the MN has a default address, to which data will be

sent when its current location is unknown.

Attacker claims to have a HoA in the target network. It starts

downloading a data stream and either sends a request to

delete the binding cache entry or allows it to expire. This

redirects the data stream to the false HoA .

CGA prevents bombing individual addresses but not whole

networks

• generate a new address with its routing prefix.

Bombing HoA

The target itself cannot do anything to prevent the attack.

• it does not help if the target stops sending or accepting BUs.

The attacker needs to find a CN that is willing to send data

streams to unauthenticated recipients.

• Many popular web sites provide such streams.

A firewall on the border of the target network may be able to

filter out packets to nonexistent addresses.

• However, IPv6 addressing privacy features can make such

filtering difficult.

Limiting bombing attacks: Return
Routability

Test the return routability (RR) of MN's new address

• CN sends a packet with a secret value to the new location and
accepts the BU only if MN is able to return the value (or hash)

• Thus MN can receive packets at the claimed address

• Number of potential attackers is strongly reduced

Figure shows how a BU is authenticated using two secrets,
which CN sends to MN's home and CoAs. The secret sent
directly to the CoA forms the RR test.

The RR test can be seen as a variation of the cookie exchange,
used in TCP, Photuris, and IKE

HA

CN

RR

Expiry of a binding cache

• Deleting the cache entry means that MN's new address defaults to the HoA

, but since MN may have become unreachable, it is not always possible to

test RR for the new address.

One solution:

• mark the cache entry as invalid and

• stop sending data to MN until the RR test succeeds

–Then some cache entries are never deleted.

Alternative: additional RR test for the HoA during every BU

• Invariant: a successful RR test for the HoA has been performed recently

• When the cache entry needs to be deleted, it can be deleted immediately

–BU cancellation, expiring cache entry, or failing BU authentication

• This limits bombing-attack targets to networks where attacker has recently

visited.

RR

In routing-based authentication (CN sends a

plaintext key to MN via its HoA), the same

secret key can also serve as the RR test for

the HoA .

Thus CN tests return routability of both HoA

and CoA.

RR is complementary to CGA-based BU

authentication, which does not prevent

bombing of the home network.

Transport layer: Flow Control

When sending a data flow into a new route, CN could first

verify that this route accepts the data

Send first a single packet and increase the transmission rate

gradually.

TCP: reset the TCP window size to one packet when MN

moves. This would, in effect, test return routability of the

new route before sending large amounts of data into it.

Adding a secure RR test to all transport protocols and

changing existing implementations is not be possible in

practice.

Some transport-layer protocols either do not practice TCP

compatible congestion control or allow spoofing of

acknowledgments.

Therefore: return routability test in the IP layer.

DoS Attacks against unnecessary BU
Authentication

When a MIPv6 MN receives an IP packet from a new CN
via its home network, it may automatically send a BU
to CN.

The attacker can exploit this by sending MN spoofed IP
packets (e.g. ping or TCP SYN packets) that appear to
come from different CN addresses.

The attacker will automatically start the BU protocol
with all these CNs.

If CN addresses are real addresses of existing IP nodes,
most instances of the BU protocol will complete
successfully. The entries created into the binding
caches are useless.

This way, the attacker can induce MN or CN to execute
the BU protocol unnecessarily, which will drain host's
resources.

A strong cryptographic authentication protocol is more
vulnerable than a weak or unauthenticated.

Reflection and Amplification

Reflection: Attacker sends data to other nodes and tricks them into

sending the same number, or more (amplification), packets to the

target.

• Possible even when ingress filtering prevents source address spoofing.

The location management protocols could also be used for reflection.

For example, CN in Figure responds to the initial packet by sending

two packets to MN (one to the HoA and one to the new address).

• If public-key authentication is used, the packets sent by CN may be

significantly larger than the one that triggers them.

Preventing Resource Exhaustion: Delaying
Commitment

Idea: delay committing one's resources until other party has shown its honesty

Require first a weaker authentication, such as a RR, before expensive
computation.

Making the protocol parties stateless:

• usually only the responder can be stateless,

• not clear which party initiates the BU process and which one responds.

–MN normally initiates the authentication,

–this may be triggered by a packet belonging to another protocol that arrived from CN via HA.

–Moreover, if a packet sent by CN triggers a BU, CN's IP layer does not know that this was the
case because the IP layer is stateless and does not maintain a history of sent packets.

• Make CN stateless until the BU has been authenticated.

One way in which CN can remain stateless is to derive a values Ka using a
one-way function from a secret value N known only by CN and a value
dependent on the MN:

• CN uses the same value of N for all MNs.

• It can discard Ka because it can recompute the values after receiving the final
message.

CN generates a new secret Ni periodically.

Cryptographic puzzles

Used to protect against resource-exhaustion attacks.

A server requires its clients to solve a puzzle, e.g. bruteforce
search for some input bits of a one-way function, before
committing its own resources to the protocol.

The server can adjust the difficulty of the puzzles according to
its load.

Solving the puzzle creates a small cost for each protocol
invocation, which makes flooding attacks expensive but has
little effect on honest nodes.

Drawbacks:

• IP layer does not know which node is the server (i.e. the
respondent)

• MNs often have limited processor and battery capacity while an
attacker pretending to be a MN is likely to have much more
computational resources

The puzzle protocols work well only when all clients have
approximately equal processing power

Setting a limit on the amount of resources

Processor time, memory and communications bandwidth, used

for location management.

When the limit is exceeded, communication needs to be

prioritized.

A node that exceeds the limit should stop sending or

accepting BUs and allow binding cache entries to expire.

Although communication can continue via MN's home

network, it is suboptimal.

Node should try to resume normal operation when attack may

be over.

Ingress filtering at the attacker's local network mitigates the

resource exhaustion attacks by making it easier to trace

the attacker and to filter out the unwanted packets.

Favoring Regular Customers

CN's local security policy: allow BUs with some

• high-priority MNs or

• those with which it has a long-term relationship or

• recent meaningful communication.

The decision may violate the layering principle: a Web server
could accept BUs from its clients after it has successfully
executed the TCP handshake.

How does MN obtain its CoA?

IPv6 stateless address autoconfiguration used to obtain

an IPv6 address for MN.

Host combines tentative interface identifier with link-

local address prefix and probes address with a

Neighbor Solicitation message.

If another host is already using this address then he

sends a Neighbor Advertisement message.

An intruder can use this protocol exchange for a DoS

attack.

IETF Send WG tries to solve this problem.

Stateful address autoconfiguration (DHCP)

Security Problems?

Binding Updates (BU) are

security relevant.

 BU enables

source routing

Unprotected BUs:

- Denial of Service attacks

- Man-in-the-Middle attacks

Binding Updates between HA<->MN and between CN<-> MN experience different

protection.

Binding Update

Data Flow without Route

Optimization

Mobile Node
Home Agent

Correspondent

Node

Visited Network

Home Network

Leaf Router

Packet

Modifications

Adversary

The Home Address

The home address (HoA) must be unique for

each MN (global reachable IP address).

Functionality:

• Connection endpoint identifier for long-lived
connection

• Is used to reach MN

• (HoA,CoA) pair used to create profile for
personalization

• Can used to identify MN for billing and charging
(additionally to NAI)

Selected Problem 1: Privacy [RFC2462]

Hosts selects interface identifier

Interface identifier is based on the link layer address

Since the link layer address rarely changes MN is

uniquely identified

CoA Prefix reveals location of MN (source address)

HoA

• represents long-lived endpoint identifier

• is unencrypted

• revealed to CN (Route Optimization)

CoA and/or HoA enable profiling

Solutions for Privacy Problem

Bi-directional IPSec tunnel from MN

to HA

• Very expensive communication

HA option encryption

• Requires modification to IPSec

IPv6 Privacy Extension

• Changing stateless address
autoconfiguration

Disable Route Optimization

• Performance degradation

Castelluccia Mobile IPv6 Privacy

Proposal

• Uses Temporal Mobile Identifier

• TMI changed temporarily, HoA
encrypted

B
in
di
ng

 U
p
da

te

Binding Update

Data Flow without Route

Optimization
D
a
ta
 F
lo
w
 w

ith
 R

o
ut
e

O
pt
im

iz
at
io
n

Mobile Node
Home Agent

Correspondent Node

Visited Network
Home Network

Router

Advertisement

Leaf Router

Standard Sec Infrastructure cannot be used

To enable route optimization

 BU must be sent to CN

Consequences:

• Security Association between MN-CN required

• Previously suggested: IPsec (together with IKE)

• IPsec does not address mobility specific problems; IKE is
computationally expensive;

• Public key infrastructure not available

• Protection of BU difficult
 IPSec policies too coarse grained

• CN has to run many IKE exchanges

• CN has to store a large number of SAs

• Vulnerability against active attackers may be acceptable
 Unauthenticated key agreement/key transport

Selected Problem 2: Address Ownership

Authorization Problem

• MN must show that it is owner of an IP address

Is this MN allowed to set the (CoA,HoA)-binding?

First proposal to address this mobility & security

problem:

• Purpose Built Keys

• Proposal does not require a PKI or similar security
infrastructure

• Does not provide “perfect” security (i.e. protection against
all attacks)

After this proposal was published similar proposals have

been submitted.

Purpose Built Keys

Home Agent

Visited Network
Home Network

Leaf Router

E
nd

po
in

t I
de

nt
ifi
er

 (
E
ID

)

Mobile Node

Correspondent Node

{B
in

di
ng

 U
pd

at
e,

 P
K
(m

n)
, [

no
nc

e|
tim

es
ta

m
p]

 }
S
K
(m

n)

Mobile IPv6 Security
MN CN Binding Update

MN

Home
Network

CN

HA

Home Test Init

Home Test Init

Binding
Update Care-of Test InitHome Test

Home Test

Care-of
Test

Security Property: Return Routability
Verifies that a node is able to respond to packets sent to a given address
Assumption: Routing infrastructure is secure

HIP (Host Identity Payload + Protocol)
Overview

Protocol proposal submitted by Bob Moskowitz.

HIP is developed independently (not within an IETF

working group).

Protocol proposal contains:

A new namespace / new identity

An authentication and key exchange protocol

Architecture

HIP: A new namespace / new identity

Basic Idea: Cryptographic identity for a host

An IP address to identify a host is not the best idea

(see multi-homed hosts, virtual interfaces)

Used Identities:

• Host Identity (=Public Key)

• Host Identity Tag (=hash of the public key, 128 bit)

• SPI (same as in IPSec)

• LSI (32-bit Local Scope Identity)

Security Association indexed by Host Identity Tag (HIT)

32 bit value (LSI) is used to support IPv4 applications

Host Identities can be well-known or anonymous

Higher layers only see identities, not addresses

HIP Architecture
An additional Identifier

Application-specific

identifiers
Application Layer

Transport Layer
Pairs <IP address, Port#> +

Transport Protocol ID

Host IdentityHost Identity (HI)

Network LayerIP address

Data Link LayerLink layer address

HIP: Authentication and key exchange

The HIP protocol is used to create an IPSec ESP security association

The protocol has the following properties:

• DoS protection with the client-puzzle mechanism

• Re-keying provided by a separate protocol

• Digital signatures and certificates are exchanged in a DNS like data
structure.

• The DNS protocol is strongly integrated with HIP

• Identities are stored into the DNS (DNS Binary Labels allow reverse
mapping).

Including the HIP identity in every packet would be difficult.

Therefore HIP is always combined with IPSec ESP where the HIP

Identity is “compressed” into IPsec ESP SPI.

HIP Properties

IP addresses still used for routing packets.

Bandwidth conservative

Each host must have at least one key pair

A 128 bit hash or tag to be used in system calls

End-to-end use but integration of intermediate devices

planned.

HIT replaces IP address as the ‘name’ of a host

Enables mobility and allows simpler multi-homing

Addressing realm friendliness

Support for different addressing schemes, end-to-end

=> IPv4/IPv6 migration

What about PKI and HIP?

HIP assumes interaction with DNS

• Identity in KEY records

• DNSSEC required for trustable as the 3rd party
authentication

Payload uses DNS RR formats

• Reuse existing code

• KEY, SIG, OPT, and A records

• Subject to change to reduce packet size

HIP Protocol Exchange

Initiator Responder

HIT(I), HIT(R)

HIT(R), HI(R), HIT(I), PK(R), HIP

Transform, ESP Transform,

HIP_Cookie, HIP SIG

HIT(I), HIT(R), HIP Cookie, LSI(R),

SPI(R), PK(I), HIP Transform, { ESP

Transform, HI(I)}k(i,r), HIP SIG

HIT(R), LSI(I), SPI(I), { HI(R), HIP

Cookie}k(i,r), HIP SIG

HIP Protocol Exchange
Legend

Host Identity Tag – HIT

Host Identity – HI

I – Initiator

R – Responder

PK(R), PK(I) – Diffie-Hellman Public Key of Responder
(Initiator)

k(i,r) – session key computed between I and R

HIP SIG – Digital Signature computed over the entire packet

HIP (ESP) Transport – List of algorithm to be negotiated
(used)

HIP Cookie – Values required for the Client Puzzle

LSI – Local Scope Identity

SPI – Security Parameter Index

Special HIP Packets

Message for rekeying

Bootstrapping for the case where the initiator

does not possess the HIT of the responder.

Packet to announce readdressing

• Readdressing required because of:

–PPP reconnect

–DHCP new lease, IPv6 address prefix change

–Mobility related readdressing

–IPv6 privacy related IP address change

Summary

HIP introduces new and interesting concepts.

The introduction of a new address space based on a

cryptographic identity makes a lot of things easier:

• Mobility

• Multi-Homing

• IPv4/IPv6 Transition

Solutions are already there for these problems;

HIP solves the problems in a different way.

Additionally HIP has security integrated into the

protocol.

Open Source implementations might create an

interesting alternative.

Authentication, Authorization and
Accounting (AAA)

Authorization: Is a particular entity able to pay for the

requested resources?

Which resource?

• Certain services

• Specific QoS

• Amount of time being online

• Data volume transmitted/received

Goal:

• 1) Establishing a financial settlement

• 2) Prevent unauthorized nodes from gaining access to resources

Two basic models for (1):

• Subscription-based Architecture

• Alternative Access Architecture

Subscription-based Architecture

Access
Network

MN

AR

AAA

Home
Network

AAAL

Terms:

AAAL - Local AAA server

AAAH - Home AAA server

AAAH

AAA

EAP over PANA,

IEEE 802.1x,

ICMP, etc.

•MN is registered at home network (typically secret key based).

•Several protocol proposals exist for transport of AKA information
between MN and the AAA attendant.

Alternative Access Architecture

Access
Network

Charging

MN

AR

Background
Payment System

Charging

Background
Payment System

CCS CCCAAA

Terms:

CCS – Credit Control Server

CCC – Cost Charging Centre

EAP over PANA, IEEE

802.1x, ICMP, etc.

PANA

Protocol for carrying Authentication for Network Access

(pana)

Provides carrier for EAP messages over IP (UDP)

Provides in-order delivery of packets

PANA is a protocol for heterogeneous network access

(link layer agnostic).

PANA provides a mechanism for the PAC to discover the

PAA on the link

Provides different mechanisms to prevent unauthorized

nodes from accessing the network (interaction with

other protocols)

PANA Framework

Note that some protocol interactions are optional.
Terminology: http://www.ietf.org/internet-drafts/draft-ietf-pana-requirements-05.txt

PaC EP PAA AAA

PAA Discovery

PANA Request

AAA Interaction

PANA Response

Filter information
installation

PANA SA PANA SA

Access control SA establishment

Protected PANA Messages

PANA Security Association
Establishment

PANA relies on EAP methods to produce keying material for PANA SA.

PaC PAA AAA

AAA Session
Key Transport

PANA SA PANA SA

EAP Authentication (PaC AAA[L|H] Authentication)

PAA Discovery

Protected PANA Messages

Literature

PANA IETF WG:

• http://www.ietf.org/html.charters/pana-charter.html

WLAN Security:

• Fluhrer, Mantin, Shamir: "Weaknesses in the Key Scheduling

Algorithm of RC4"

(see http://citeseer.nj.nec.com/fluhrer01weaknesses.html)

EAP IETF WG:

• http://www.ietf.org/html.charters/eap-charter.html

AAA IETF WG:

• http://www.ietf.org/html.charters/aaa-charter.html

PPPEXT IETF WG:

• http://www.ietf.org/html.charters/pppext-charter.html

Airsnort Software:

• http://airsnort.shmoo.com/

Open Source IEEE 802.1X (EAP) Implementation:

• http://www.open1x.org

Literature

Linux (FreeS/Wan: http://www.freeswan.org/)

Contains AH, ESP (Klips) and IKE (Pluto)

IETF IPsec WG: http://www.ietf.org/html.charters/ipsec-

charter.html

AES Support: http://www.irrigacion.gov.ar/juanjo/ipsec/

IPv6 and IPSec: http://www.ipv6.iabg.de

BSD (e.g. http://www.netbsd.org/Documentation/network/ipsec/)

IKE Daemon: Racoon

Provides Traffic Selectors at a fine-grain granularity and “policy”

management

PF_KEY: RFC 2367

API for the communication with the kernel-based key engine (Security

Association Database (SADB) and Security Policy Database (SPD))

Literature

Kerberos IETF WG:

• http://www.ietf.org/html.charters/krb-wg-charter.html

Kerberos V4

• Steiner, B., Neuman, C., Schiller, J.: "Kerberos: An
Authentication Service for Open Network Systems", USENIX
Conference, (Dallas, TX), pp. 191-201, 1988.

KINK

• http://www.ietf.org/html.charters/kink-charter.html

Kerberos V5

• http://www.ietf.org/rfc/rfc1510.txt

MIT Kerberos Software implementation:

• http://web.mit.edu/kerberos/www/

Literature

IETF Mobile IP WG:

• http://www.ietf.org/html.charters/mobileip-charter.html

• Particularly interesting are the following drafts:

–MIPv4, MIPv6; Hierarchical Mobile IPv6 mobility management

–Fast Handovers for Mobile IPv6

IETF AAA WG:

• http://www.ietf.org/html.charters/aaa-charter.html

IETF Context Transfer, Handoff Candidate Discovery, and
Dormant Mode Host Alerting (seamoby):

• http://www.ietf.org/html.charters/seamoby-charter.html

IRTF Routing Research Group (Micromobility)

• http://www-nrc.nokia.com/sua/irtf-mm-rr/IRTF-mm-rr.htm

Literature

Host Identity Payload and Protocol

• http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-
05.txt

Host Identity Payload Implementation Issues

• http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-
impl-01.txt

Host Identity Payload Architecture

• http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-
arch-02.txt

Implementations:

• HIPL: HIP for Linux http://gaijin.iki.fi/hipl/
FINE

