Lesson 1 — Introduction

Service Oriented Architectures Security

Module 1 - Basic technologies

Unit 1 - Introduction

Ernesto Damiani

Universita di Milano

Course outline

e Web page: http://ra.crema.unimi.it
— This is where all the lecture materials and additional
pointers can be found
e Course syllabus (summary):
— Web service basics
= SOAP
= WSDL
= UDDI
— Service Composition & BPEL
— Messaging
- Web 2.0 and REST
— Mashups
— SOA and integration architectures
- Presentations from industry

Multi-tiered structure of Web
applications (1)

e Multi-tiered architectures result from adding an
additional layer to allow clients to access applications
via a Web server

eThe addition of the Web layer led to the notion of
“application servers”, middleware platforms
supporting access via the Web

Multi-tiered structure of Web
applications (2)

HTTP parameter passing (1)

e The introduction of forms for allowing users to
provide information to a web server required to
modify HTML (and HTTP) but it provided a more
advanced interface than just retrieving files

HTTP parameter passing (2)

— Exercise: explain the meaning of all lines of the following
HTTP exchange

= POST /cgi-bin/post-query HTTP/1.0
= Accept: www/source

= Accept: text/html

= Accept: video/mpeg

= Accept: image/jpeg

= Accept: application/postscript

= User-Agent: Lynx/2.2 libwww/2.14
= From: grobe@www.cc.ukans.edu

= Content-type: application/x-www-form-urlencoded
= Content-length: 150

= * a blank line *

= &name = E

» &email= ernesto.damiani@unimi.it

CGI heritage (1)

e The earliest implementations of Web applications
were built directly upon the existing systems.

e The CGI script (or program) acted as client in the
traditional sense (for instance using RPC)

— the user clicked in a given URL and the server invoked the
corresponding script

— the script executed, produced the results and passed them
back to the server (usually as the address of a web page)

- the server retrieved the page and send it to the browser

CGI heritage (2)

respanse
PagE

Implemented
as a normal client

Existing Middl)eware Infrastructure

Why CGIs don’'t scale (1)

e CGI have several problems that are not easy to
solve:

— CGI scripts are separate processes, requiring additional

context switches when a call is made (and thereby adding
to the overall delay)

- Fast-CGI allows calls to be made to a single running
process but it still requires two context switches

— CGI is really a quick hack not designed for performance,
security, scalability, etc.

Why CGIs don’t scale (2)

Request1 Request 2

\ Web server process

EEREENEEEREEEEEE II"I"'I"'I"I"'I'*

Normal CGI calls

CGI script
child process 2
CGI script

child process 1

Call to
underlying

Request 1 Request 2 middleware

\ \ Web server process

Fast CGI calls

Call to
underlying
middleware

CGI script
child process 1

From thin to thick clients (1)

e A conventional web browser does not do much
beyond displaying data

— the processing power at the client is not used
e By adding a JVM (Java Virtual Machine) to the
browser, now it becomes possible to dynamically
download the client functionality (an applet) every
time it is needed

— The client becomes truly independent of the operating
system and is always under the control of the server

From thin to thick clients (2)

browser
VM

1. Get

client 3. C/S

system

From CGI to serviets (1)

e Servlets have the same role as CGI scripts: they
provide a way to invoke a program in response to
an http request.

e BUT, servlets run as threads of the Java server
process (not necessarily the web server) not as
separate OS processes

Request 1
N,

From CGI to serviets (2)

Request 2
b

N\

N\

Java server process

LY (AR RRA RN RN RRL]] Illl-lll-llllllllll-lll* L]

EEAEEss e

T
.
= s

thread

Call servlets

\

Servlet
child thread 1

Servlet
child thread 2

Call to
underlying
middleware

Launching a serviet

a‘/_ HTML request includes _\\

< SERVLET NAME=MyServlet>
< PARAM NAME=paraml VALUE=vall=>
< PARAM NAME=paraml VALUE=vall>

< /SERVLET=

l _____

/ Servlet code \\

import java serviet *:
public class MyServlet extends GenericServlet {
public void service (
ServletRequest request.

ServletResponse response - HTML

) throws ServletException, I0Exception document

{
-

. J

/- ™\

AN S

e

4

Web-based access to enterprise systems

ot

browser

CGl script calls

+ |
TP Client] |TP Client

Yearly balance ? Monthly
average revenue ?

Internet

r

TP-Monitor
environment

E recoverable

> queue

2

a,

= app server 3
Branch 1 Branch 2 Finance Dept.

= & 2

A critical view of the business Web (1)

e HTTP was originally designed as a document
exchange protocol (request a document, get the
document, render/display it)

- It is almost like e-mail (in fact, it uses RFC 822 compliant
mail headers and MIME types)

— The document format (HTML) was designed to cope with
GUI problems

A critical view of the business Web (2)

e Interaction through document exchange can be
very inefficient when the two sides of the interaction
are programs (documents must be created, sent,
parsed on arrival, etc.)

e The initial WWW model was biased towards the
server

- the client (the browser) does not do much beyond
displaying the document

- for complex applications, that meant much more traffic
between client and server

= high loads at the server as the number of users increases

From Web-mediated application access
to B2B (1)

e The basic idea behind B2B follows the
client/server model

e A service provided by one company can be
directly invoked by a client running in another
company

From Web-mediated application access
to B2B (2)

e Problems

- joint development of client and server is not possible

- the server and client are likely to be hidden behind
firewalls

— the interaction takes place among existing systems, it is
not possible to assume the IT platforms will be uniform

- the Internet is cheap but open to everybody (unlike
leased lines that are expensive but private)

= Existing systems/protocols are not really designed for such
type of interactions

Predecessors: RPC remote calls

- Y
TOL
DElEII’JI—"‘IHE”E
- {EIII:II.UIIIIIT”L
IDL
2oUrCs
Application client IDL eompiler Applicaton e
procedure B ' : " procedurs
Languagegpedfic Intetface | Language apedfic
call inpecface : | header : call ingerface
l Clisnt aubsz I-ll'------- L----: : __i . __.._l [—T—]
BEFC APT EFC AT

BEFC run-ome EFC run-time
servies libmaoy N — g services libmary
_ﬁ-'
A -‘HH- f-
T A) ;"'
—
m
DCH security
services

Web service architecture (1)

e IBM’s Web service architecture composed of
three elements:

1. Service requester: the potential user of a service (the
client)

2. Service provider: the entity that implements the service
and offers to carry it out on behalf of the requester (the
server)

3. Service registry: a place where available services are
listed and that allows providers to advertise their
services and requesters to lookup and query for services

Web service architecture (2)

_I-" o
/ SERYICE “xx

4 REGISTRY "*.H

/ = K\
c:wk Service ;'}

description {

FIND Jf”j N /' _PUBLISH
/ N
ri Y
g *-, J
!;“ / SERVICE \
/ / PROVIDER
s
' HHK Service \\‘
SERVICE b description)
REQUESTER /
/ GIND s.emceimermaJ /
/ N\ /

' .-"' K\ Service ,-"'l
\H ! !

F

Main standards (1)

e The Web service architecture proposed by IBM is
based on two key concepts:

— architecture of existing synchronous middleware platforms
— current specifications of SOAP, UDDI and WSDL

e It has a remarkable client/server flavor

o It reflects only what can be done with

— SOAP (Simple Object Access Protocol)
— UDDI (Universal Description and Discovery Protocol)
- WSDL (Web Services Description Language)

Main standards (2)

UDDI
SERYICE " SERVICE \
REGISTRY \
y
“.L Service
desmlptlnn
FIND PUBLISH

SOAP SERYICE
/ PROVIDER
Service
SERVICE

description 5

Service interfnee
, aervice

REQUESTER / BIND

WS5SDL

WS benefits

e One important difference with conventional
middleware is related to the standardization efforts
at the W3C that guarantee:

- Platform independence (Hardware, Operating System)

- Use of existing networking infrastructure (HTTP)

- Programming language neutrality (.NET talks with Java)

— Portability across middleware tools of different Vendors
e \Web services are “loosely coupled” components
that foster software reuse

e WS technologies are composable and can be
adopted incrementally

WS standards

Transport HTTE, HHOP, SMTP, IMS
Messaging XML, SOAP WS-Addressing
Description XML Schema, WSDL W5-Policy, SSDOL
Discovery uDDI WS-MetadataExchange
Choreography WSCL WSCI WS-Coordination
Business Processes WS-BPEL BPML WSCDL
Stateful Resources WS5-Resource Framework
Reliable Messaging WS-Reliability W5-ReliableMessaging
Security WS5-5ecurity W5-Trust, WS-Priuaq
SAML, XACML WS5S-SecureConversation
Event Notification WS-Notification Wh5-Eventing
Management WSDM W5-Management
Data Access OGSA-DA] DO

SOA vs WS

« Web services are about Interoperability

— Standardization

- Integration across heterogeneous, distributed systems
— Service Oriented Architectures are about:

- Large scale software design

- Software Engineering

— Architecture of distributed systems

e SOA is possible but more difficult without Web
services

— SOA introduces some radical changes to software:
= Language independence (what matters is the interface)
= Event based interaction (no longer synchronous models)
» Message based exchanges (no RPC)
= Composition and orchestration

Dynamic Binding

e \WS Invocation Framework

— Use WSDL to describe a service

- Use WSIF to let the system decide what to do when the
service is invoked:

= If the call is to a local EJB then do nothing

= If the call is to a remote EJB then use RMI

= If the call is to a queue then use JMS

= If the call is to a remote Web service then use SOAP and XML

e There is a single interface description, the system
decides on the binding

— This type of functionality is at the core of the notion of

Service Oriented Architecture
S FINE

>V
* >®
-

L 224
’1

4
000‘

e
&

L 29
*

