
Service Oriented Architectures Security 

 

Module 1 - Basic technologies 

 

Unit 1 – Introduction 

 

Ernesto Damiani 

Università di Milano 

Lesson 1 – Introduction 



Course outline 

• Web page: http://ra.crema.unimi.it 
– This is where all the lecture materials and additional 

pointers can be found 

• Course syllabus (summary): 
– Web service basics 

 SOAP 

 WSDL 

 UDDI 

– Service Composition & BPEL 

– Messaging 

– Web 2.0 and REST 

– Mashups 

– SOA and integration architectures 

– Presentations from industry 

 



Multi-tiered structure of Web 
applications (1) 

• Multi-tiered architectures result from adding an 

additional layer to allow clients to access applications 

via a Web server 

•The addition of the Web layer led to the notion of 

“application servers”, middleware platforms 

supporting access via the Web 

 



Multi-tiered structure of Web 
applications (2) 



HTTP parameter passing (1) 

• The introduction of forms for allowing users to 

provide information to a web server required to 

modify HTML (and HTTP) but it provided a more 

advanced interface than just retrieving files 



HTTP parameter passing (2) 

– Exercise: explain the meaning of all lines of the following 
HTTP exchange 

 POST /cgi-bin/post-query HTTP/1.0 

 Accept: www/source 

 Accept: text/html 

 Accept: video/mpeg 

 Accept: image/jpeg 

 ... 

 Accept: application/postscript 

 User-Agent: Lynx/2.2 libwww/2.14 

 From: grobe@www.cc.ukans.edu 

 Content-type: application/x-www-form-urlencoded 

 Content-length: 150 

 * a blank line * 

 &name = E 

 &email= ernesto.damiani@unimi.it 



CGI heritage (1) 

• The earliest implementations of Web applications 

were built directly upon the existing systems. 

• The CGI script (or program) acted as client in the 

traditional sense (for instance using RPC) 

– the user clicked in a given URL and the server invoked the 
corresponding script 

– the script executed, produced the results and passed them 
back to the server (usually as the address of a web page) 

– the server retrieved the page and send it to the browser 



CGI heritage (2) 



Why CGIs don’t scale (1) 

• CGI have several problems that are not easy to 

solve: 

– CGI scripts are separate processes, requiring additional 
context switches when a call is made (and thereby adding 
to the overall delay) 

– Fast-CGI allows calls to be made to a single running 
process but it still requires two context switches 

– CGI is really a quick hack not designed for performance, 
security, scalability, etc.  

 



Why CGIs don’t scale (2) 



From thin to thick clients (1) 

• A conventional web browser does not do much 

beyond displaying data 

– the processing power at the client is not used 

• By adding a JVM (Java Virtual Machine) to the 

browser, now it becomes possible to dynamically 

download the client functionality (an applet) every 

time it is needed 

– The client becomes truly independent of the operating 
system and is always under the control of the server 



From thin to thick clients (2) 



From CGI to servlets (1) 

• Servlets have the same role as CGI scripts: they 

provide a way to invoke a program in response to 

an http request. 

• BUT, servlets run as threads of the Java server 

process (not necessarily the web server) not as 

separate OS processes 



From CGI to servlets (2) 



Launching a servlet 



Web-based access to enterprise systems 



A critical view of the business Web (1) 

• HTTP was originally designed as a document 

exchange protocol (request a document, get the 

document, render/display it) 

– It is almost like e-mail (in fact, it uses RFC 822 compliant 
mail headers and MIME types) 

– The document format (HTML) was designed to cope with 
GUI problems 



A critical view of the business Web (2) 

• Interaction through document exchange can be 

very inefficient when the two sides of the interaction 

are programs (documents must be created, sent, 

parsed on arrival, etc.) 

• The initial WWW model was biased towards the 

server  

– the client (the browser) does not do much beyond 
displaying the document 

– for complex applications, that meant much more traffic 
between client and server 

 high loads at the server as the number of users increases 

 



From Web-mediated application access 
to B2B (1) 

• The basic idea behind B2B follows the 

client/server model 

• A service provided by one company can be 

directly invoked by a client running in another 

company 

 



From Web-mediated application access 
to B2B (2) 

• Problems 

– joint development of client and server is not possible 

– the server and client are likely to be hidden behind 
firewalls 

– the interaction takes place among existing systems, it is 
not possible to assume the IT platforms will be uniform 

– the Internet is cheap but open to everybody (unlike 
leased lines that are expensive but private) 

 Existing systems/protocols are not really designed for such 
type of interactions 



Predecessors: RPC remote calls 



Web service architecture (1) 

• IBM’s Web service architecture composed of 

three elements: 

1. Service requester: the potential user of a service (the 
client) 

2. Service provider: the entity that implements the service 
and offers to carry it out on behalf of the requester (the 
server) 

3. Service registry: a place where available services are 
listed and that allows providers to advertise their 
services and requesters to lookup and query for services 



Web service architecture (2) 



Main standards (1) 

• The Web service architecture proposed by IBM is 

based on two key concepts:  

– architecture of existing synchronous middleware platforms 

– current specifications of SOAP, UDDI and WSDL 

• It has a remarkable client/server flavor 

• It reflects only what can be done with 

– SOAP (Simple Object Access Protocol) 

– UDDI (Universal Description and Discovery Protocol) 

– WSDL (Web Services Description Language) 



Main standards (2) 



WS benefits 

• One important difference with conventional 

middleware is related to the standardization efforts 

at the W3C that guarantee: 

– Platform independence (Hardware, Operating System) 

– Use of existing networking infrastructure (HTTP) 

– Programming language neutrality (.NET talks with Java) 

– Portability across middleware tools of different Vendors 

• Web services are “loosely coupled” components 

that foster software reuse 

• WS technologies are composable and can be 

adopted incrementally 



WS standards 



SOA vs WS 

• Web services are about Interoperability  

– Standardization 

– Integration across heterogeneous, distributed systems 

– Service Oriented Architectures are about: 

– Large scale software design 

– Software Engineering 

– Architecture of distributed systems 

• SOA is possible but more difficult without Web 

services 

– SOA introduces some radical changes to software: 

 Language independence (what matters is the interface) 

 Event based interaction (no longer synchronous models) 

 Message based exchanges (no RPC) 

 Composition and orchestration 



Dynamic Binding 

• WS Invocation Framework 

– Use WSDL to describe a service 

– Use WSIF to let the system decide what to do when the 
service is invoked: 

 If the call is to a local EJB then do nothing 

 If the call is to a remote EJB then use RMI 

 If the call is to a queue then use JMS 

 If the call is to a remote Web service then use SOAP and XML 

• There is a single interface description, the system 

decides on the binding 

– This type of functionality is at the core of the notion of 
Service Oriented Architecture 

FINE 


