
Service Oriented Architectures Security

Module 1 - Basic technologies

Unit 5 – BPEL

Ernesto Damiani

Università di Milano

Lesson 11 – Programming language

Variables

• Used to store, reformat and transform messages

• Required to send and receive messages

• Each variable has a Type

Activities (1)

Activities (2)

Scope

• Scopes can be used to divide the business process

into organized parts

• A <scope> is an execution context for the

contained activities, and a process is, itself, a

<scope>

• A <scope> defines local variables and can catch

and handle either specific faults or all faults that

occur with it

– Ex: GetCreditRating Scope – Invoke Credit Service and
catch exceptions

Control flow (1)

• BPEL provides the usual branching and looping

control flow constructs

• A <sequence> executes activities in serial order

• A <switch> executes at most one alternative based

on expressions specified on child <case> elements

with an optional <otherwise>

– Ex: choose between United and Star Loan offers based on
lower APR

• A <while> loops through activities while a

variable's value is true

Control flow (2)

• BPEL provides a parallel control construct through

the <flow> activity

– Ex: Invoke United and Star Loan services in parallel

• More complex synchronization is achieved

through "join" expressions composed of link

statuses and boolean operations (&& and ||)

Partner Links

• Links to all parties that process interacts

• Links can be to Web Services

– Ex: CreditService, UnitedLoanService, StarLoanService

• Links can be to other BPEL processes as well

• PartnerLinkTypes

– Declares how parties interact and what each party offers

Fault handling

• Handle faults to enable completion of process using

<faultHandlers>

• Use <catch> activity to handle specific faults

– Ex: catch bad credit exception and terminate the process

• Use <catchAll> to handle all other faults

Event handling

• Message events

– Useful to address wait for several messages

• Alarm events

– Make process wait for a callback for a certain period of time

• <pick> activity

– Process should wait the occurrence of one event in a set of
events

 Ex: Loan Flow could be changed to use <pick> activity that
waits only 30 minutes for a Loan request

Correlation (1)

• BPEL correlates messages based on properties

referenced in a <correlationSet>

• Multiple properties can be combined into a

composite correlation key

• Properties are typed by XML Schema simple types

and bound ("aliased") via Xpath expressions to

locations in message parts

Correlation (2)

• Non-determinism

• A <pick> activity waits: for a message specified by

an <onMessage> child element, where correlation

allows a specific process instance to be addressed

for an amount of time or until a time, specified with

an <onAlarm> child element

Steps to build business process

Step 1: define public interface

• Deliverables:

– WSDL description of the interface of the implemented
BPEL process

Step 2: create partner dictionary

• Deliverables:

– List of the WSDL of the services that will be invoked as
part of the BPEL Process

– For each partner, document the order in which
operations will be invoked (choreography)

– Make sure that each use case describes both positive
and negative use cases

Step 3: create message and
type dictionary

• Deliverables:

– A set of XML Schema files that describe the type of the
messages and XML documents used as part of the
BPEL process

Step 4: transformation logic

• Deliverables:

– A set of XSLT and XQuery files that encapsulate
mapping information across the various types used in
the BPEL process

Step 5: orchestration logic

• Deliverables:

– Implement the workflow that ties the interactions
across partners into an end-to-end business process

– Make sure that all exceptions and timeouts are
managed properly

Step 6: iterate

• Deliverables:

– Add incrementally new partners

– Keep on improving exception management

– Create automated test and regression framework

Step 7: create test environment (1)

• Deliverables:

– Implement dummy test services for each end point
(could be BPEL or your favorite Web services
publishing technology)

– Create test scenario for each positive and negative use
cases

Step 7: create test environment (2)

– Crash test, longevity test (integrity/reliability)

– Performance test, stress test

Step 8: live pilot

• Deliverables:

– Wire BPEL process to real end points

– Run regression tests

Step 9: fine-tune operation
tasks

• Deliverables:

– Exception Management

– Integration with Web Service Management Framework

– Security

– Archiving

Cross platform

BPEL Designer

– Native BPEL Support

– Drag-and-drop process modeler

– UDDI and WSIL service browser

– Visual XPATH editor

– One-click build and deploy

BPEL Console (1)

• Key features

– Visual Monitoring

– Auditing

– BPEL Debugging

– In-flight Instance

BPEL Console (2)

– Administration

– Performance Tuning

– Partitioning/Domains

Example: loan service

– The problem

– e.g. in programming: x = x+1 and x = x+y in
sequence/in parallel

– Databases, Distributed networking

– ACID

 Atomic

 Consistent

 Isolated

 Durable

 Traditional transactions

Two phase commit

Extended transactions

• Need for Extended Transactions in Web Services

• Rationale for Non-ACID requirements

– Long duration, alternate failure handling, selected outcome
inclusion, non-blocking across enterprises

• Web Services Protocols and Framework Standards

– WS-Coordination

– WS-Atomic Transaction

– WS-Business Activity

Classic and basic transactions

FINE

