Lesson 11 - Programming language

Service Oriented Architectures Security
Module 1 - Basic technologies

Unit 5 - BPEL

Ernesto Damiani

Universita di Milano

Variables

e Used to store, reformat and transform messages
e Required to send and receive messages

e Each variable has a Type

Example:

<variables>
<variable name="loanfpplication"
messageType="ns2:LoanServiceRequestMess
age’ />

</variables>

Activities (1)

Primitive Activities Structured Activities

<ihvoke= <sequence-=
<recalye= <switch>
<assign> <pick>
{rgply} <flow=
<throw= <|link=>
<terminate> <while>

<wait> <scope-

Activities (2)

® <invoke>
- Invoke a service synchronously
= Ex.: Invoke Credit Service
® <receive>
— Waits for the incoming message, either to start the process or
for a callback
= Ex.: Wait for a message from United Loan
e <reply>
- Return response for synchronous process, relate to
initial <receive>
® <assign>

— Copy data between variables, expressions and endpoint
references

- Used with XPath expressions and XSLT engine
= Ex.: Copy Load Application from input payload to United Loan input

Scope

e Scopes can be used to divide the business process
into organized parts

e A <scope> is an execution context for the
contained activities, and a process is, itself, a
<scope>

e A <scope> defines local variables and can catch
and handle either specific faults or all faults that
occur with it

- Ex: GetCreditRating Scope - Invoke Credit Service and
catch exceptions

Control flow (1)

e BPEL provides the usual branching and looping
control flow constructs

e A <sequence> executes activities in serial order

e A <switch> executes at most one alternative based
on expressions specified on child <case> elements
with an optional <otherwise>

— Ex: choose between United and Star Loan offers based on
lower APR

e A <while> loops through activities while a
variable's value is true

Control flow (2)

e BPEL provides a parallel control construct through
the <flow> activity

- Ex: Invoke United and Star Loan services in parallel
e More complex synchronization is achieved
through "join" expressions composed of link
statuses and boolean operations (&& and ||)

Partner Links

e Links to all parties that process interacts

e Links can be to Web Services

- Ex: CreditService, UnitedLoanService, StarLoanService
e Links can be to other BPEL processes as well
e PartnerLinkTypes

— Declares how parties interact and what each party offers

Fault handling

e Handle faults to enable completion of process using
<faultHandlers>

e Use <catch> activity to handle specific faults
— Ex: catch bad credit exception and terminate the process

e Use <catchAll> to handle all other faults

Event handling

e Message events

- Useful to address wait for several messages
e Alarm events

- Make process wait for a callback for a certain period of time
e <pick> activity

— Process should wait the occurrence of one event in a set of
events

= Ex: Loan Flow could be changed to use <pick> activity that
waits only 30 minutes for a Loan request

Correlation (1)

e BPEL correlates messages based on properties
referenced in a <correlationSet>

e Multiple properties can be combined into a
composite correlation key

e Properties are typed by XML Schema simple types
and bound ("aliased") via Xpath expressions to
locations in message parts

Correlation (2)

e Non-determinism

e A <pick> activity waits: for a message specified by
an <onMessage> child element, where correlation
allows a specific process instance to be addressed
for an amount of time or until a time, specified with
an <onAlarm> child element

Steps to build business process

Step 1: define public interface

e Deliverables:

— WSDL description of the interface of the implemented

BPEL process
LoanRow
BPEL Process
Inltlate

| o
Client : F e

I

1

!

! Callback] ﬁ >
i n

I

|
ﬁ'_? anRasult i
1

LoanFlow.wsdl

WSDL |

LoanPlow

iy

Step 2: create partner dictionary

e Deliverables:

— List of the WSDL of the services that will be invoked as
part of the BPEL Process

- For each partner, document the order in which
operations will be invoked (choreography)

— Make sure that each use case describes both positive
and negative use cases

LoanRow .
BPEL Process : Credit Rating
L

binding

Callback

cF:r onResult

LoanFlow.wsdl bpel.xmil

Cli=nt 5*;?\}

End point reference

Deployment Descriptor

:_!: United Loan

=
I_-

Step 3: create message and
type dictionary

e Deliverables:

— A set of XML Schema files that describe the type of the
messages and XML documents used as part of the
BPEL process

LoanRow
BPEL Process

WSDL i

LoanEFlow ﬁ lE_ a

i L= u

Inlflzts 4 ’ 5 5
s 5% 2
| L = =5

"y L
Cliens St E
Callmask . EgS

| variables 2o

4mm onResult Seisauis o E"ﬁ

e :_!: United Loan
LoanFlow.wadl EOre... bpel.xml

Step 4: transformation logic

e Deliverables:

— A set of XSLT and XQuery files that encapsulate
mapping information across the various types used in
the BPEL process

LoanRow
BPEL Process
WSsDL
LoanElow I..é i
ag
Inlflats B - ¢ 5
7 £g2
E=E
Client BEL
Callzack : Eg®S
variables Fa
== onfssult loa lication §'Lﬁ
crInput
chutEut

LoanFlow.wsdl more. . bpel.xml

Step 5: orchestration logic

e Deliverables:

- Implement the workflow that ties the interactions
across partners into an end-to-end business process

— Make sure that all exceptions and timeouts are
managed properly

Credit Rating
Synchronous
B <invokel:
s

Star Loan

United Loan guilEsacit

<invoke>
. Crmceivan,
% e ives, - .

e Deliverables:

— Add incrementally new partners

Step 6: iterate

— Keep on improving exception management
— Create automated test and regression framework

WSDL

LoanFElow

Inlflats ml

Client
Callback

4mm onRssult

LoanFlow.wsdl

LoanRow
BPEL Process

orchestration

variables
loanfpplication

crinput

chutEut

more. .

Deployment Descriplor
End point reference
binding

bpel.xml

Step 7: create test environment (1)

e Deliverables:

- Implement dummy test services for each end point
(could be BPEL or your favorite Web services
publishing technology)

— Create test scenario for each positive and negative use
cases

Step 7: create test environment (2)

— Crash test, longevity test (integrity/reliability)
— Performance test, stress test

Dummy Test Services

L e e
=| Credit Rating
g

LoanRow

BPEL Process
WsDL orchestration
LoanFlow -Ing_ o
£
initiate m 25 .
&e E
Climmnt] E .E
Callbaczk :
Assmas variables E‘;
== onresuit loandpplication g
crinput =

crfiutput

LoanFlow.wsdl more.. bpel.xmi

e Deliverables:

Step 8: live pilot

— Wire BPEL process to real end points

— Run regression tests

WSDL
LoanFlow

Initiate =l

Client
Callback

== pnResult

LoanFlow.wsdl

LoanRow
BPEL Process

orchestration

variables
loankpplication
crinput
criutput

moxre..

Integration owver
internetfintranst

End point reference
binding

Deployment Descriptor

Vel el
% Credit Rating

bpel.xmil

Step 9: fine-tune operation
tasks

e Deliverables:

— Exception Management
— Integration with Web Service Management Framework

— Security
— Archiving

Cross platform

Application Server IDE

- Oracle Application Server - JDeveloper

- WebLogic Server - Eclipse

- WebSphere

- JBoss

Database Dp~_-;=rating Systems
- Oracle Database - Linux

- SQL Server - Window XP/2003
- Oracle Lite - Solaris

- Sybase - HP UX

- Pointbase

- 0S5

BPEL Designer

Native BPEL Support
Drag-and-drop process modeler
UDDI and WSIL service browser
Visual XPATH editor

One-click build and deploy

ey -
F Y arnaia.
e
- e
[
aar
[E ﬁﬁﬁﬁﬁ
ik e
S e | s,
s
Eﬂ E-'_,_‘ -l
=4 e !
3 ired anba
T el BTNy FRLH
NI
qqqqqq e
ﬁ vl el 1l
ki radu-d.

BPEL Console (1)

o Key features

— Visual Monitoring
- Auditing

— BPEL Debugging

— In-flight Instance

BPEL Console (2)

— Administration
— Performance Tuning
— Partitioning/Domains

FE LT
P
[hma u romans il reda [[
||||| e s o ¢ e Ll e e - o g = | C
=] i L-] AL TR AL e Ll = LN ST
CIRET L ST m i R e 1
cadbmad | WL e [Lateasr | e rrsion |
- Tered o Imrd e W s
Hn b o e Pl b LT M e m
P TY P e Fewe- L7 Biewbm
sman e s -2 - - - -
LEE =
e
Pirriem e
] T
g [LEs LTy T L
'
-
=
" e
m m:
----- rb
[T S LT
Ly e dama dulmi . e
A S “ T T e LI -

Example: loan service

Lean Procurement Pl

0 00m
y % ol ralng
i EE I hanidle negative
Credic Rating creddit sermokior
Serrige

4 Praces applacation m m pracess applcation E

Ll el Lz St i Loain

et on lnen offes ready receive @ S e Lo o
e axyre, []

Selsct Lireessi D=

— The problem

- e.g. in programming: X = X+1 and X = X+y in
sequence/in parallel

— Databases, Distributed networking

- ACID
= Atomic
» Consistent
= [solated
= Durable
» Traditional transactions

ASK 10r Vaes

I/ \l
| Wai

& (o wwi)

(Any Vote A.gins: (Al wores For)
Send Aborts Send Commils
Y \‘/'
' (TimeOu) Commet
Send Abos

S —

Two phase commit

Participant

/ N
/ i}
K {Vote Raquozied))

— -

Vote Commit
v

[veah)
l (% g-ahaan))
™ -
Ao,

(Commit)
SeNG ACK
& e

Extended transactions

e Need for Extended Transactions in Web Services

e Rationale for Non-ACID requirements

- Long duration, alternate failure handling, selected outcome
inclusion, non-blocking across enterprises

e \Web Services Protocols and Framework Standards

— WS-Coordination
— WS-Atomic Transaction
— WS-Business Activity

Classic and basic transactions

Appkcation
Apalication

. Iy

- Jh '_-;l - ¥ P
J,.__'l-__ P

i

v L]

l Web Sarvica A Wab Service B Wb Sarvice C
T T ¥ 1 T

Wl Service A Web Servoe B e Servioe G

: NG % :) 3008
E-:Eiiéi M : Sy g

.Rli--;ul ¥ Rasull + . Rauln ;

Basul :
il | Flight Hods Rantal Car

Flight Heahal Feanlal Gar

A QD & | D k=

Compansals

