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Variables

e Used to store, reformat and transform messages
e Required to send and receive messages

e Each variable has a Type

Example:

<variables>
<variable name="loanfpplication"
messageType="ns2:LoanServiceRequestMess
age’ />

</variables>



Activities (1)

Primitive Activities  Structured Activities

<ihvoke= <sequence-=
<recalye= <switch>
<assign> <pick>
{rgply} <flow=
<throw= <|link=>
<terminate> <while>

<wait> <scope-



Activities (2)

® <invoke>
- Invoke a service synchronously
= Ex.: Invoke Credit Service
® <receive>
— Waits for the incoming message, either to start the process or
for a callback
= Ex.: Wait for a message from United Loan
e <reply>
- Return response for synchronous process, relate to
initial <receive>
® <assign>

— Copy data between variables, expressions and endpoint
references

- Used with XPath expressions and XSLT engine
= Ex.: Copy Load Application from input payload to United Loan input



Scope

e Scopes can be used to divide the business process
into organized parts

e A <scope> is an execution context for the
contained activities, and a process is, itself, a
<scope>

e A <scope> defines local variables and can catch
and handle either specific faults or all faults that
occur with it

- Ex: GetCreditRating Scope - Invoke Credit Service and
catch exceptions



Control flow (1)

e BPEL provides the usual branching and looping
control flow constructs

e A <sequence> executes activities in serial order

e A <switch> executes at most one alternative based
on expressions specified on child <case> elements
with an optional <otherwise>

— Ex: choose between United and Star Loan offers based on
lower APR

e A <while> loops through activities while a
variable's value is true



Control flow (2)

e BPEL provides a parallel control construct through
the <flow> activity

- Ex: Invoke United and Star Loan services in parallel
e More complex synchronization is achieved
through "join" expressions composed of link
statuses and boolean operations (&& and ||)



Partner Links

e Links to all parties that process interacts

e Links can be to Web Services

- Ex: CreditService, UnitedLoanService, StarLoanService
e Links can be to other BPEL processes as well
e PartnerLinkTypes

— Declares how parties interact and what each party offers



Fault handling

e Handle faults to enable completion of process using
<faultHandlers>

e Use <catch> activity to handle specific faults
— Ex: catch bad credit exception and terminate the process

e Use <catchAll> to handle all other faults



Event handling

e Message events

- Useful to address wait for several messages
e Alarm events

- Make process wait for a callback for a certain period of time
e <pick> activity

— Process should wait the occurrence of one event in a set of
events

= Ex: Loan Flow could be changed to use <pick> activity that
waits only 30 minutes for a Loan request



Correlation (1)

e BPEL correlates messages based on properties
referenced in a <correlationSet>

e Multiple properties can be combined into a
composite correlation key

e Properties are typed by XML Schema simple types
and bound ("aliased") via Xpath expressions to
locations in message parts



Correlation (2)

e Non-determinism

e A <pick> activity waits: for a message specified by
an <onMessage> child element, where correlation
allows a specific process instance to be addressed
for an amount of time or until a time, specified with
an <onAlarm> child element



Steps to build business process




Step 1: define public interface

e Deliverables:

— WSDL description of the interface of the implemented
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Step 2: create partner dictionary

e Deliverables:

— List of the WSDL of the services that will be invoked as
part of the BPEL Process

- For each partner, document the order in which
operations will be invoked (choreography)

— Make sure that each use case describes both positive
and negative use cases
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Step 3: create message and
type dictionary

e Deliverables:

— A set of XML Schema files that describe the type of the
messages and XML documents used as part of the
BPEL process
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Step 4: transformation logic

e Deliverables:

— A set of XSLT and XQuery files that encapsulate
mapping information across the various types used in
the BPEL process
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Step 5: orchestration logic

e Deliverables:

- Implement the workflow that ties the interactions
across partners into an end-to-end business process

— Make sure that all exceptions and timeouts are
managed properly
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e Deliverables:

— Add incrementally new partners

Step 6: iterate

— Keep on improving exception management
— Create automated test and regression framework
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Step 7: create test environment (1)

e Deliverables:

- Implement dummy test services for each end point
(could be BPEL or your favorite Web services
publishing technology)

— Create test scenario for each positive and negative use
cases



Step 7: create test environment (2)

— Crash test, longevity test (integrity/reliability)
— Performance test, stress test

Dummy Test Services
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e Deliverables:

Step 8: live pilot

— Wire BPEL process to real end points

— Run regression tests
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Step 9: fine-tune operation
tasks

e Deliverables:

— Exception Management
— Integration with Web Service Management Framework

— Security
— Archiving



Cross platform

Application Server IDE

- Oracle Application Server - JDeveloper

- WebLogic Server - Eclipse

- WebSphere

- JBoss

Database Dp~_-;=rating Systems
- Oracle Database - Linux

- SQL Server - Window XP/2003
- Oracle Lite - Solaris

- Sybase - HP UX

- Pointbase

- 0S5



BPEL Designer

Native BPEL Support
Drag-and-drop process modeler
UDDI and WSIL service browser
Visual XPATH editor

One-click build and deploy
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BPEL Console (1)

o Key features

— Visual Monitoring
- Auditing

— BPEL Debugging

— In-flight Instance



BPEL Console (2)

— Administration
— Performance Tuning
— Partitioning/Domains
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Example: loan service
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— The problem

- e.g. in programming: X = X+1 and X = X+y in
sequence/in parallel

— Databases, Distributed networking

- ACID
= Atomic
» Consistent
= [solated
= Durable
» Traditional transactions



ASK 10r Vaes

I/ \l
| Wai

& (o wwi)

(Any Vote A.gins: (Al wores For)
Send Aborts Send Commils
Y \‘/'
' (TimeOu) Commet
Send Abos

S —

Two phase commit

Participant

/ N
/ i}
K {Vote Raquozied) )

— -

Vote Commit
v

[ veah )
l (% g-ahaan) )
™ -
Ao,

(Commit)
SeNG ACK
& e




Extended transactions

e Need for Extended Transactions in Web Services

e Rationale for Non-ACID requirements

- Long duration, alternate failure handling, selected outcome
inclusion, non-blocking across enterprises

e \Web Services Protocols and Framework Standards

— WS-Coordination
— WS-Atomic Transaction
— WS-Business Activity



Classic and basic transactions
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