
Service Oriented Architectures Security

Module 3 - Resource-oriented services

Unit 2 – Examples

Ernesto Damiani

Università di Milano

Lesson 16 – A Practical SOA
Example

XTream – SOA Driven to the Extreme

• Runtime platform and model for highly distributed,

pervasive data stream processing

• Built on top of OSGi

• Extensive use of services

– interaction between components of XTream

– external, predefined services (R-OSGi, Configuration
Admin, Logging, etc.)

Stream Processing in a Nutshell (1)

• Traditional RDBMS

– store data before processing

– data is “static”

– queries come and go

Stream Processing in a Nutshell (2)

• Stream processing

– process data immediately at arrival

– queries are “static”

– data comes and goes

“Traditional” Streaming Applications (1)

• Network monitoring

– intrusion detection

– load monitoring

• Financial markets

– quote updates

– automatic trading

• Military

“Traditional” Streaming Applications (2)

• Well-defined application boundaries

• Logically centralized orchestration

• “Classic” requirements

– low latency

– high throughput

Highly Distributed Pervasive Data
Stream Processing

• Federation of large number of heterogeneous,

independent, autonomous, and widely distributed

sources, sinks, and processors into a highly dynamic,

loosely coupled mesh

• Primary foci differ from those of traditional stream

processing

– handle dynamism imposed by autonomy of entities

– ensure privacy, confidentiality, and integrity of data

Processing and Exchanging Personal
Information Streams

• Main motivation for XTream project

• Perfect instance of “highly distributed pervasive

data stream processing”

– covers technical properties and challenges

– matches primary foci

– strikingly simple

– applicable to millions’ of people every day life

The Past

• Advances in networking, computing, and devices

• Proliferation of data sources

– media (photos, video clips)

– text (e-mail, blog entries, chat messages)

– machine-generated data (sensor data, notifications)

• Possibility to access data sources from anywhere

and at any time

Challenges

• Buffering of data

• Processing of data

• Distribution and dissemination of data

• Combination and interaction of applications

• Context dependency

The Present

• Custom solutions (standalone programs)

• Heavy engines (data base and stream engines)

• Web 2.0

– sharing of media (e.g., Flickr, YouTube)

– exchange of text (e.g., webmail, browser chats)

– use of machine-generated data (e.g., Google calendar, RSS
weather feed)

– mashups

Issues

• Scalability (centralized infrastructure of Web 2.0)

– more and more content created

– interest for particular data restricted to small group

• Programmability

– HTTP / web app model not designed for push

– limited extensibility

• Privacy concerns

The Future

• An open and extensible platform that enables

– everyday users to easily process personal information

– groups of users to easily exchange information

– developers to write extensible, interoperable apps

• A programming model that supports and deals

with dynamic changes

• Direct communication between nodes

XTream

• Generalize data stream processing model

Generalizing the Data Stream
Processing Model

• Treat personal information as data streams

– new e-mails arriving

– chat messages

– …

• Integrate push and pull into slets and channels

• That’s all nice, but where’s the link to SOA…

Services Ahead: Implementation Model

Implementation Model

• Loosely coupled components

– interact with each other through services

– can come and go at any time

• Connectors added as indirection

– between slets and channels

– entity in the model that covers communication

Programming Abstraction

Use Case: SkypeMail (1)

• Display e-mails exchanged with caller

• Plain and distinct application that covers a set of

key challenges

– heterogeneous data

– push / pull

– event-triggered

– processing

– reusability

Use Case: SkypeMail (2)

Use Case: Photo Exchange

• Exchange recently taken photos with friends

– each user accesses them in a different manner

– aggregation of different photo feeds

– independent computing systems

The Big Picture (1)

• Mandatory

– Java VM, OSGi runtime

– Config Admin, Log svc.

– XT-base bundles

• Optional

– XT-administrative bundles

– XT-remote bundle

– Controllers

The Big Picture (2)

XTream Base Bundles (1/2)

• Mandatory for operation

– Core

 exports common API (item container, channel interfaces, etc.)

 helper methods

 library bundle

– Slet

 exports slet API for concrete slet implementation bundles

 implementation of common code: input and output ports

 library bundle

XTream Base Bundles (2/2)

• Channel

– provides implementations of XTream channels

– registers a ManagedServiceFactory service to receive
configuration

– data for channels

• Connector

– provides implementations of local XTream connectors

– registers a ManagedServiceFactory service to receive
configuration data for connectors

XTream Administrative
Bundles

• Optional, can be loaded and unloaded at runtime

– Monitoring

 exports API for clients that monitor an XTream system

 tracks clients and notifies them of changes

– Management

 exports API for clients that manage an XTream system

 provides services for installing slet implementations,
creating instances of slets or channels, wiring slets to
channels, etc.

Slet Implementations

• Provide the actual functionality of an slet

• Implement slet API exported by slet bundle

• Plain JARs with one mandatory manifest entry:

• SletMain‐Class (name of slet main class)

• Multiple instances of the same type of slet can be

created

XTream Remote Bundle

• Optional, needed for distributed operation

• Uses R-OSGi to communicate with remote peers

• Provides implementation of remote connectors

Local Controller Bundles

• Use monitoring and management bundles to

interact with the system

– install slet implementations

– create instances of slets and channels

– connect slets to channels

– parametrize instances of slets

• Can be loaded and unloaded at runtime

The Whiteboard Pattern

• Decouple event listener and event source through

the OSGi service registry

– event listener registers itself as service

– event source fetches and calls all listener service when an
event is to be dispatched

• Big plus: no management of (stale?) registrations

• Whitepaper:

http://www.osgi.org/wiki/uploads/Links/whiteboard.

pdf

Whiteboard Example: Monitoring Bundle
and its Clients

• Monitoring bundle exports API for listeners:

SletListener, WiringListener, PortListener, etc.

• Clients implement these interfaces and register the

implementing class as service

• E.g., if an slet creates an input port the monitoring

bundle fetches all PortListener services and calls

sletCreatedInputPort(…) on them

Configuration Admin Service

• Persistently saves configuration for services

– for services (service is managing itself)

– for factories (service factories manage services)

• When a managed service or managed service

factory is registered, the Configuration Admin service

passes the persisted configuration to it

• Extensively used in XTream to persist state

Example of Configuration Admin in
XTream: Channels

Efficient Implementation of Fully
Dynamic Binding (1/2)

• Use OSGi service tracker

– proactively tracks and caches services

– retrieve up-to-date array of tracked services (Java objects)
when interacting with other components

– proactive tracking only causes overhead once every time
bindings actually change

– binding between 2 components recorded in one place

 consistency

 performance (length of tracker expression is O(1))

Efficient Implementation of Fully
Dynamic Binding (2/2)

FINE

