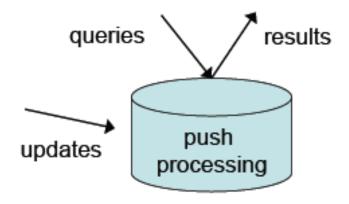
Lesson 16 – A Practical SOA Example

Service Oriented Architectures Security

Module 3 - Resource-oriented services

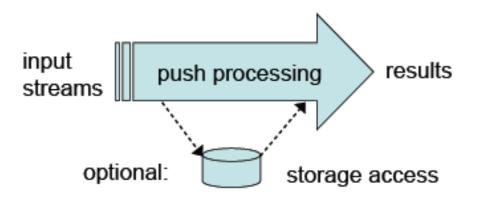
Unit 2 – Examples

Ernesto Damiani


Università di Milano

XTream – SOA Driven to the Extreme

- Runtime platform and model for highly distributed, pervasive data stream processing
- Built on top of OSGi
- Extensive use of services
 - interaction between components of XTream
 - external, predefined services (R-OSGi, Configuration Admin, Logging, etc.)


Stream Processing in a Nutshell (1)

- Traditional RDBMS
 - store data before processing
 - data is "static"
 - queries come and go

Stream Processing in a Nutshell (2)

- Stream processing
 - process data immediately at arrival
 - queries are "static"
 - data comes and goes

"Traditional" Streaming Applications (1)

- Network monitoring
 - intrusion detection
 - load monitoring
- Financial markets
 - quote updates
 - automatic trading
- Military

"Traditional" Streaming Applications (2)

- Well-defined application boundaries
- Logically centralized orchestration
- "Classic" requirements
 - low latency
 - high throughput

Highly Distributed Pervasive Data Stream Processing

 Federation of large number of heterogeneous, independent, autonomous, and widely distributed sources, sinks, and processors into a highly dynamic, loosely coupled mesh

- Primary foci differ from those of traditional stream processing
 - handle dynamism imposed by autonomy of entities
 - ensure privacy, confidentiality, and integrity of data

Processing and Exchanging Personal Information Streams

- Main motivation for XTream project
- Perfect instance of "highly distributed pervasive data stream processing"
 - covers technical properties and challenges
 - matches primary foci
 - strikingly simple
 - applicable to millions' of people every day life

The Past

- Advances in networking, computing, and devices
- Proliferation of data sources
 - media (photos, video clips)
 - text (e-mail, blog entries, chat messages)
 - machine-generated data (sensor data, notifications)
- Possibility to access data sources from anywhere and at any time

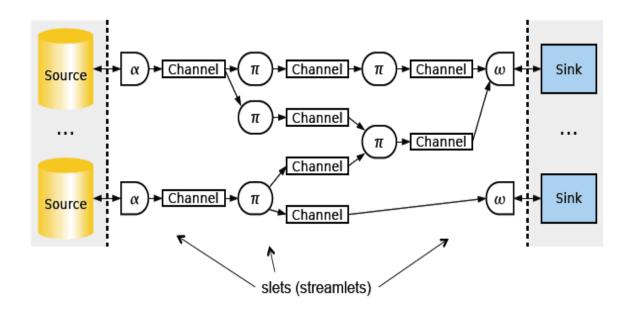
Challenges

- Buffering of data
- Processing of data
- Distribution and dissemination of data
- Combination and interaction of applications
- Context dependency

The Present

- Custom solutions (standalone programs)
- Heavy engines (data base and stream engines)
- Web 2.0
 - sharing of media (e.g., Flickr, YouTube)
 - exchange of text (e.g., webmail, browser chats)
 - use of machine-generated data (e.g., Google calendar, RSS weather feed)
 - mashups

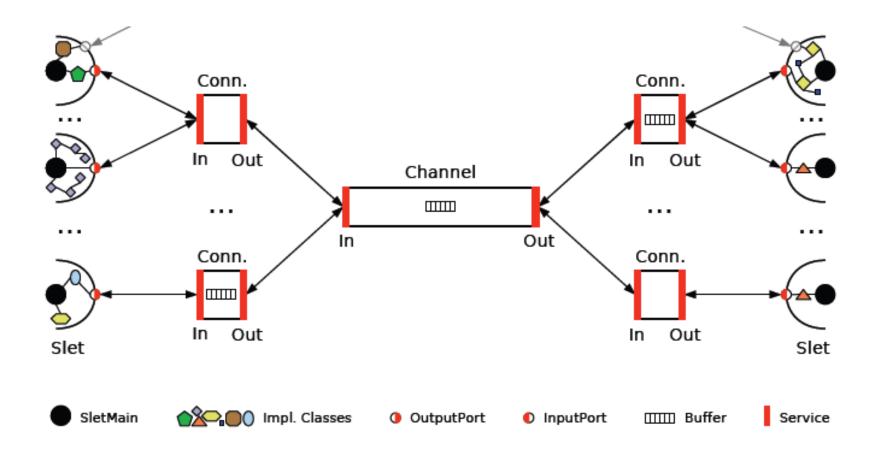
Issues


- Scalability (centralized infrastructure of Web 2.0)
 - more and more content created
 - interest for particular data restricted to small group
- Programmability
 - HTTP / web app model not designed for push
 - limited extensibility
- Privacy concerns

The Future

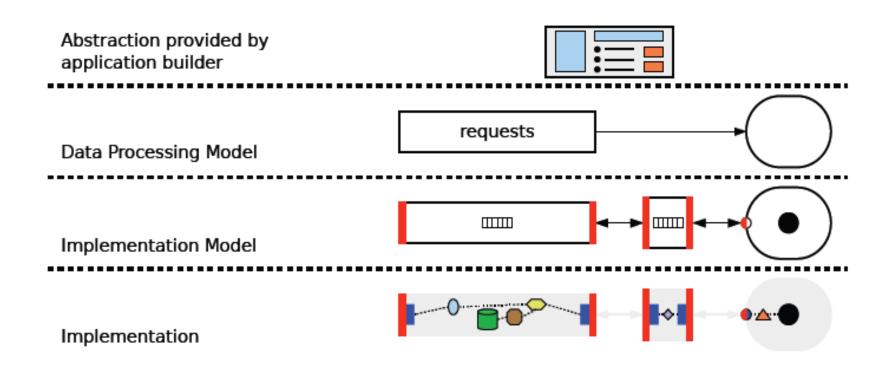
- An open and extensible platform that enables
 - everyday users to easily process personal information
 - groups of users to easily exchange information
 - developers to write extensible, interoperable apps
- A programming model that supports and deals with dynamic changes
- Direct communication between nodes

XTream


• Generalize data stream processing model

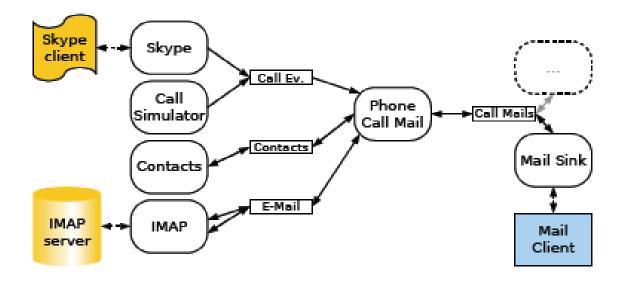
Generalizing the Data Stream Processing Model

- Treat personal information as data streams
 - new e-mails arriving
 - chat messages
 - ...
- Integrate push and pull into slets and channels
- That's all nice, but where's the link to SOA...

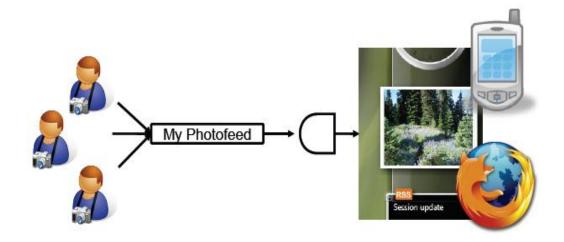

Services Ahead: Implementation Model

Implementation Model

- Loosely coupled components
 - interact with each other through services
 - can come and go at any time
- Connectors added as indirection
 - between slets and channels
 - entity in the model that covers communication


Programming Abstraction

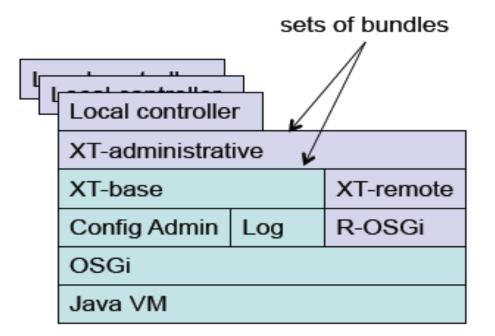
Use Case: SkypeMail (1)


- Display e-mails exchanged with caller
- Plain and distinct application that covers a set of key challenges
 - heterogeneous data
 - push / pull
 - event-triggered
 - processing
 - reusability

Use Case: SkypeMail (2)

Use Case: Photo Exchange

- Exchange recently taken photos with friends
 - each user accesses them in a different manner
 - aggregation of different photo feeds
 - independent computing systems



The Big Picture (1)

• Mandatory

- Java VM, OSGi runtime
- Config Admin, Log svc.
- XT-base bundles
- Optional
 - XT-administrative bundles
 - XT-remote bundle
 - Controllers

The Big Picture (2)

XTream Base Bundles (1/2)

- Mandatory for operation
 - Core
 - exports common API (item container, channel interfaces, etc.)
 - helper methods
 - library bundle
 - Slet
 - exports slet API for concrete slet implementation bundles
 - implementation of common code: input and output ports
 - library bundle

XTream Base Bundles (2/2)

Channel

- provides implementations of XTream channels
- registers a *ManagedServiceFactory* service to receive configuration
- data for channels
- Connector
 - provides implementations of local XTream connectors
 - registers a *ManagedServiceFactory* service to receive configuration data for connectors

XTream Administrative Bundles

- Optional, can be loaded and unloaded at runtime
 - Monitoring
 - exports API for clients that monitor an XTream system
 - tracks clients and notifies them of changes
 - Management
 - exports API for clients that manage an XTream system
 - provides services for installing slet implementations, creating instances of slets or channels, wiring slets to channels, etc.

Slet Implementations

- Provide the actual functionality of an slet
- Implement slet API exported by slet bundle
- Plain JARs with one mandatory manifest entry:
- SletMain-Class (name of slet main class)
- Multiple instances of the same type of slet can be created

XTream Remote Bundle

- Optional, needed for distributed operation
- Uses R-OSGi to communicate with remote peers
- Provides implementation of remote connectors

Local Controller Bundles

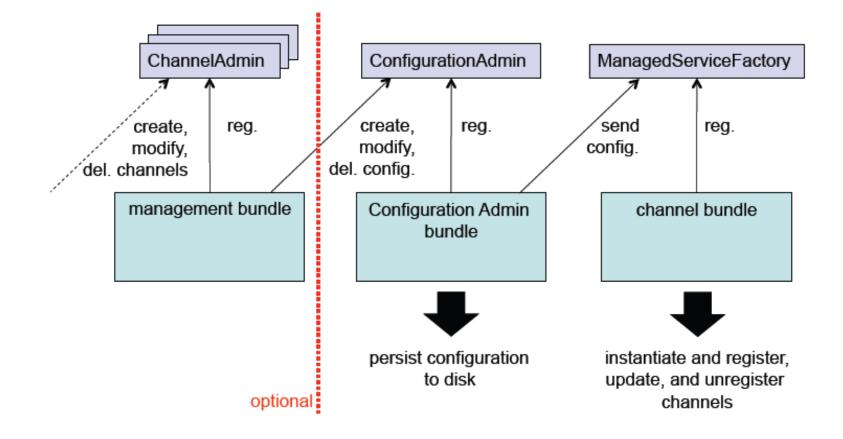
- Use monitoring and management bundles to interact with the system
 - install slet implementations
 - create instances of slets and channels
 - connect slets to channels
 - parametrize instances of slets
- Can be loaded and unloaded at runtime

The Whiteboard Pattern

- Decouple event listener and event source through the OSGi service registry
 - event listener registers itself as service
 - event source fetches and calls all listener service when an event is to be dispatched
- Big plus: no management of (stale?) registrations
- Whitepaper:

http://www.osgi.org/wiki/uploads/Links/whiteboard. pdf

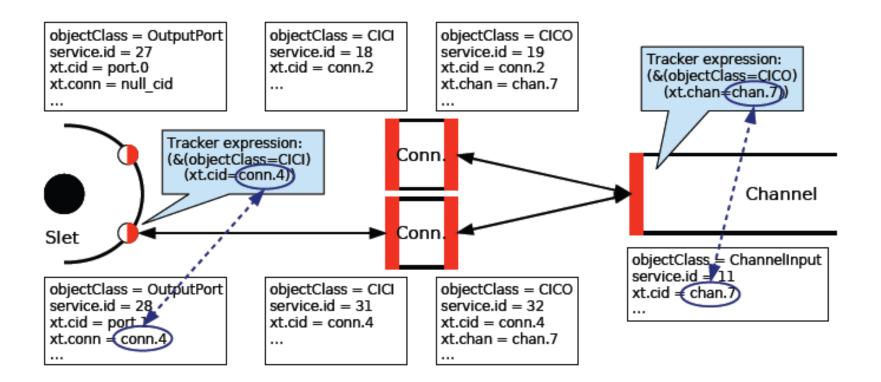
Whiteboard Example: Monitoring Bundle and its Clients


- Monitoring bundle exports API for listeners: SletListener, WiringListener, PortListener, etc.
- Clients implement these interfaces and register the implementing class as service

• E.g., if an slet creates an input port the monitoring bundle fetches all PortListener services and calls sletCreatedInputPort(...) on them

Configuration Admin Service

- Persistently saves configuration for services
 - for services (service is managing itself)
 - for factories (service factories manage services)
- When a managed service or managed service factory is registered, the Configuration Admin service passes the persisted configuration to it
- Extensively used in XTream to persist state


Example of Configuration Admin in XTream: Channels

Efficient Implementation of Fully Dynamic Binding (1/2)

- Use OSGi service tracker
 - proactively tracks and caches services
 - retrieve up-to-date array of tracked services (Java objects) when interacting with other components
 - proactive tracking only causes overhead once every time bindings actually change
 - binding between 2 components recorded in one place
 - consistency
 - performance (length of tracker expression is O(1))

Efficient Implementation of Fully Dynamic Binding (2/2)

