Lesson 19 - Software engineering
aspects

Service Oriented Architectures Security
Module 4 - Architectures

Unit 1 - Architectural features

Ernesto Damiani

Universita di Milano

SOA is HAD

e HAD is an old concept in distributed information
systems

- H = Heterogeneous
- A = Autonomous
— D = Distributed
e HAD is
— the essence of and the reason for SOA
— the problem SOA tries to solve
e HAD is where the OO paradigm has failed

— CORBA
— Object Oriented Databases
- Reuse

No HAD in OO: OO Detours (Steve Cook,
ECOOP 06)

e Reuse Problem: objects ignore the environment

where they live
— Real objects in different systems are autonomous
— Real objects in different systems are heterogeneous

e Distribution Problem: abstracting away the

problem’s essence

— Tight coupling (language, interaction, development,
operationg

e Database Problem: impedance mismatch
— Still present with XML, messages, and events

e Modeling Problem: from OO models to software

systems
— Objects are too low level to model real HAD systems

Services not components

e The two sides:

— Integration is based on services
- Programming is based on objects and components

e There are similarities in theory, in practice they are
very different

— Services are not object oriented

— Services have document based interfaces

— Services have a behavioral contract with their consumers
— Services are reusable by definition

— Services are (should be) loosely coupled

— Services are autonomous

— Services have (very) explicit boundaries

Objects — Components - Services

Compiler based Middleware based Container + middleware
Object/method interfaces Component interfaces Service interfaces
Behavior explicit in object Behavior in composition Behavior in code, container
Program is closed world Program is open world and composition

Programming language Middleware + plumbing Autonomic, large scale

Component Models - Middleware

Programming languages

Services: integration not programming

e The key issue in enterprise computing today is
integration

— Services are the best way to approach integration known so far

Implementation Phase

Point-to-point Loosely Reliable, Composable, Enterprise
: Coupled Discoverable Reusable
Integration - ¢ SOA
Services Services Services
Implementation Timeline
Contract- |ntement Service
;Aeanage First 1h:SOA St Oriented
Create a WIES Develop petamodel Oriented Semantic DY Pamic inAsta.
Heterogeneous G ment Service
- overnance Process Integration :
Systems with Discovery
Secure Framework
Proprietary
Interfaces Service
Interfaces
Wrap Legacy
Systems
in Services

Interfaces

XML and Asynchronous Data Streams:
two contemporary examples (1)

e XML

- Programming language variables
— Semi-structured Documents

— Procedural interfaces

- Document based interfaces

— Behavioral interfaces

— Variable assignment

— Declarative queries

- Impedance mismatch

XML and Asynchronous Data Streams:
two contemporary examples (2)

e Asynchronous Data Streams

— Procedural control flow

— Event based control flow

— Language based distribution
— Platform based distribution

— Behavioral interfaces

- Sequential programs

— Highly parallel and concurrent
— Model mismatch

Services = run time Software
Engineering (1)

e A Service contract involves the interface, the
Service Level agreement and QoS

e Contracts are key to be able to develop, debug,
optimize and maintain systems developed as a
combination of services

e The management of the information about
services, and the engineering of systems based on
services leads to the notion of SOA Governance

Services = run time Software
Engineering (2)

e Service contracts are not the static, compile time
pre- and post-conditions of conventional
programming languages

e They are an additional software layer in charge of
the dynamic aspects of using services

SOA governance (1)

e SOA governance introduces different aspects to
standard software engineering concepts:

— Service definition (the scope, interface, and boundaries of a
service)

— Service deployment lifecycle (the lifecycle stages)
— Service versioning (including compatibility)

— Service migration (deprecation and sunsetting)

— Service registries (dependencies)

— Service message model (canonical data models)
— Service monitoring (problem determination)

— Service ownership (corporate organization)

SOA governance (2)

Service Lifecycle and SOA Roles service-Architect, -

Designer
[Business Architect]

Architecture
Review

Senvice
(Interface)
Design

Service
Implemen-
tati

Business
Process
Design

SOA Registry/
Repository

=
[Administiator]

Senvice-
Operation

Business
Monitoring

[Eusiness (hampimj

Service definition

e The biggest challenge by service definition is to
identify service boundaries:

— Services are seen as having well defined, clear boundaries
— In practice, not that easy

— What is a service?
= Functionality vs data

— Data cohesion
= services that use common data are difficult to separate

e Boundaries make sense at the business level not
at the implementation level:

— A single database can expose many services but it
remains a single database

Coupling (1)

e Tighter coupling tends to cost more over time:

— Synchronization

- Coordinated deployment and deployment; updates
— Combinatorial explosion in dependencies

— Services are not independent (boundaries)

— Coupling implies more expensive testing

Coupling (2)

e Looser coupling requires greater investment up
front:

— More design work
= Generality
= Message model
— More implementation work
= Queues
= Message management

Life cycle

e Services are autonomous entities used by other
services
— Individual maintenance is not enough

— Coordination across entities
— Dependency management

e Service versioning

— Necessary to maintain compatibility across dependencies
(otherwise all connected services need to be upgraded
simultaneously)

e Service migration

- Eventually all consumer services need to be migrated to the
newest version

— Cascading dependencies

Registries for control and information

e The service registry serves as the name and
directory server for services and related information

— Versions available
— Services and providers
— Consumer and dependencies (less common)

e UDDI specification quite useful for this purpose

— Technical information
— Documentation

-

Service Users (consumers) Rating Service_bp_19:
Average ++++

Min: +++

Max: +++++

Comments: runs smoothly, meets our expectation
Contact: >Alice.K@your_org.biz>

o

-."H

SOA development

—(

2. hyperlink to
user comments

j_

A

- ~N
Service Repository /Reqgistry
5 (automated /integrated):
A"hitﬂ!’ 1. queries repository m;“uh i l:;ﬁr:u::lie
developing for similar services Service_bp_19: 100%
a service Service_bp_33: 100%
Service_bp_35: 95%
Service_cp_09: 93%
Service_hr_11: 900
4 N
Service_bp_19: Technical
Documentation:
Ovetview: 3. hyperlink to
Interfaces: see bp_19.wsdl il d
Policies: see bp_19.pol ecnnical docs

.

Message model

e Services are asynchronous and communicate
through messages:

- What if each service defines its own messages

— What about formats and conventions
e A message model acts as a standard determining

- The formats and conventions for messages
- May standardize messages as documents
— Published as canonical model

Monitoring

e Processes and service composition involve the
invocation of many remote services

— What happens if the service is not there
= Exception, failure, error?
— Services are autonomous
= Queues help
= Eventual manual intervention
- How to fix the problem?
= Alternative services
= Migration

e Several tools in the market

Ownership

e Arbitrage is necessary when many consumer
services use the same provider service:

— Priorities

- Life cycle

- Versioning and migration

- Load and performance
e Centralized and distributed solutions

— Both become complex at large scales

Organization

Conceptual model

lHas

Business
model
Implement Represent
Owns | Business Use Semantic Owns
process data model
Use/ Represent Composed Implement Transformed
/ 4 / S
: Information
Documents <G Services e (resources)
» 3 4
Owns Owns Owns

FINE
P 4 < p

o

(>4

3
’1

