
Service Oriented Architectures Security

Module 4 - Architectures

Unit 1 – Architectural features

Ernesto Damiani

Università di Milano

Lesson 19 – Software engineering
aspects

SOA is HAD

• HAD is an old concept in distributed information

systems

– H = Heterogeneous

– A = Autonomous

– D = Distributed

• HAD is

– the essence of and the reason for SOA

– the problem SOA tries to solve

• HAD is where the OO paradigm has failed

– CORBA

– Object Oriented Databases

– Reuse

No HAD in OO: OO Detours (Steve Cook,
ECOOP 06)

• Reuse Problem: objects ignore the environment
where they live

– Real objects in different systems are autonomous

– Real objects in different systems are heterogeneous

• Distribution Problem: abstracting away the
problem’s essence

– Tight coupling (language, interaction, development,
operation)

• Database Problem: impedance mismatch
– Still present with XML, messages, and events

• Modeling Problem: from OO models to software
systems

– Objects are too low level to model real HAD systems

Services not components

• The two sides:

– Integration is based on services

– Programming is based on objects and components

• There are similarities in theory, in practice they are

very different

– Services are not object oriented

– Services have document based interfaces

– Services have a behavioral contract with their consumers

– Services are reusable by definition

– Services are (should be) loosely coupled

– Services are autonomous

– Services have (very) explicit boundaries

Objects – Components - Services

Services: integration not programming

• The key issue in enterprise computing today is

integration

– Services are the best way to approach integration known so far

XML and Asynchronous Data Streams:
two contemporary examples (1)

• XML

– Programming language variables

– Semi-structured Documents

– Procedural interfaces

– Document based interfaces

– Behavioral interfaces

– Variable assignment

– Declarative queries

– Impedance mismatch

XML and Asynchronous Data Streams:
two contemporary examples (2)

• Asynchronous Data Streams

– Procedural control flow

– Event based control flow

– Language based distribution

– Platform based distribution

– Behavioral interfaces

– Sequential programs

– Highly parallel and concurrent

– Model mismatch

Services = run time Software
Engineering (1)

• A Service contract involves the interface, the

Service Level agreement and QoS

• Contracts are key to be able to develop, debug,

optimize and maintain systems developed as a

combination of services

• The management of the information about

services, and the engineering of systems based on

services leads to the notion of SOA Governance

Services = run time Software
Engineering (2)

• Service contracts are not the static, compile time

pre- and post-conditions of conventional

programming languages

• They are an additional software layer in charge of

the dynamic aspects of using services

SOA governance (1)

• SOA governance introduces different aspects to

standard software engineering concepts:

– Service definition (the scope, interface, and boundaries of a
service)

– Service deployment lifecycle (the lifecycle stages)

– Service versioning (including compatibility)

– Service migration (deprecation and sunsetting)

– Service registries (dependencies)

– Service message model (canonical data models)

– Service monitoring (problem determination)

– Service ownership (corporate organization)

SOA governance (2)

Service definition

• The biggest challenge by service definition is to

identify service boundaries:

– Services are seen as having well defined, clear boundaries

– In practice, not that easy

– What is a service?

 Functionality vs data

– Data cohesion

 services that use common data are difficult to separate

• Boundaries make sense at the business level not

at the implementation level:

– A single database can expose many services but it
remains a single database

Coupling (1)

• Tighter coupling tends to cost more over time:

– Synchronization

– Coordinated deployment and deployment; updates

– Combinatorial explosion in dependencies

– Services are not independent (boundaries)

– Coupling implies more expensive testing

Coupling (2)

• Looser coupling requires greater investment up

front:

– More design work

 Generality

 Message model

– More implementation work

 Queues

 Message management

Life cycle

• Services are autonomous entities used by other

services

– Individual maintenance is not enough

– Coordination across entities

– Dependency management

• Service versioning

– Necessary to maintain compatibility across dependencies
(otherwise all connected services need to be upgraded
simultaneously)

• Service migration

– Eventually all consumer services need to be migrated to the
newest version

– Cascading dependencies

Registries for control and information

• The service registry serves as the name and

directory server for services and related information

– Versions available

– Services and providers

– Consumer and dependencies (less common)

• UDDI specification quite useful for this purpose

– Technical information

– Documentation

SOA development

Message model

• Services are asynchronous and communicate

through messages:

– What if each service defines its own messages

– What about formats and conventions

• A message model acts as a standard determining

– The formats and conventions for messages

– May standardize messages as documents

– Published as canonical model

Monitoring

• Processes and service composition involve the

invocation of many remote services

– What happens if the service is not there

 Exception, failure, error?

– Services are autonomous

 Queues help

 Eventual manual intervention

– How to fix the problem?

 Alternative services

 Migration

• Several tools in the market

Ownership

• Arbitrage is necessary when many consumer

services use the same provider service:

– Priorities

– Life cycle

– Versioning and migration

– Load and performance

• Centralized and distributed solutions

– Both become complex at large scales

Conceptual model

FINE

