
Service Oriented Architectures Security

Module 1 - Basic technologies

Unit 1 – Introduction

Ernesto Damiani

Università di Milano

Lesson 2 – Introduction to SOAP

Basic problems to solve (1)

• How to make the service invocation part of the

language in a more or less transparent manner

• How to exchange data between machines that

might use different representations for different

data types

– This involves two aspects: data type formats (e.g., byte
orders in different architectures) and data structures (need
to be flattened and then reconstructed)

Basic problems to solve (2)

• How to find the service one actually wants among

a potentially large collection of services and

servers. The client does not necessarily need to

know where the server resides or even which server

provides the service

• How to deal with errors in the service invocation

in a more or less elegant manner:

– server is down or busy

– communication is down

– duplicated requests

CORBA invocations

DCOM invocations

COM model

DCOM runtime

• Installed by default

– Windows XP, 2k, (98, Me)

• Not installed by default

– Windows NT

• But installed with other apps (ex. IE)

DCOMCNFG.exe

• DCOM Configuration Tool

• View installed DCOM-enable applications list

List of DCOM-enabled apps

Windows built-in DCOM apps

• Internet Explorer

• Windows Media Player

• Windows Scripting Host

• Sound recorder

• WordPad

– and more…

Other applications

• Word

• Excel

• Outlook

• PowerPoint

– and more …

COM components on Windows

• Windows has many COM components

• They are registered under

“\HKEY_CLASSES_ROOT\CLSID” in the registry

COM components in Registry

Distributed apps by using DCOM

DCOM model

The COM/DCOM scalability (1)

• In the same process

– Fast, direct function calls

• On the same machine

– Fast, secure IPC

The COM/DCOM scalability (2)

• Across machines

– Secure, reliable and flexible DCE-RPC based DCOM
protocol

DCOM transports

DCOM security

DCOM architecture (1)

• Multiplexing - Single Port per-protocol, per server

process, regardless of # of objects

• Scalable - Connection-Less Protocols like UDP

Preferred

• Established Connection-Oriented (TCP) Sessions

Reused by same client

DCOM architecture (2)

• Low bandwidth

– Header is 28 bytes over DCE-RPC

– Keep-Alive Messages bundled for all connections
between machines

What’s right with COM?

• Focus is on binary object standard and

scalable/fine-grained component re-use

• Concreteness and depth of definition, for example

security, lifetime management, activation,

installation & deployment

• Architected extensibility

What’s wrong with CORBA/IIOP?

• Focus is on cross-node or network reuse/integration

– in practice useful for vertical solutions, not horizontal
reuse/integration

• Incomplete specification

– marshaling format of certain types of data-structures

– implications of lack of services (e.g. Naming, Events,
Lifetime management)

• No architected extensibility

Application Management

• Distribution of Code + Data + Configuration

Information

• Security and Security Delegation

– Security “roles” and re-use of components

• Performance Monitoring

• Runtime Environment

Ease-of-Use

• What’s the next programming model layer to

vastly improve ease-of-use?

– Transactions?

– Auto-caches & state management?

– Auto-distribution & -execution?

Ease-of-Use: first steps

COM/DCOM Reading list

Problems with previous solutions

• RPC, CORBA, DCOM, even Java, use different

mechanisms and protocols for communicating. All of

them map to TCP or UDP one way or another, but

use different syntax for marshalling, serializing and

packaging messages

– The problem is that these mechanisms are a legacy from
the time when communications were mostly within LANs
and within homogeneous systems

– Building a B2B environment combining the systems of
different companies becomes difficult because the protocols
available in RPC, CORBA, or DCOM are too low level and not
compatible among each other (gateways are needed, etc.)

The SOAP solution

• To address this problem, XML was used to define

SOAP

– SOAP is conceptually quite simple: RPC using HTTP

– (at the client) turn an RPC call into an XML document

– (at the server) turn the XML document into a procedure call

– (at the server) turn the procedure’s response into an XML
document

– (at the client) turn the XML document into the response to
the RPC

– use XML to serialize the arguments following the SOAP
specification

SOAP background (1)

• SOAP was originally conceived as the minimal

possible infrastructure necessary to perform RPC

through the Internet: use of XML as intermediate

representation between systems

– very simple message structure

– mapping to HTTP for tunneling through firewalls and using
the Web infrastructure

SOAP background (2)

• The idea was to avoid the problems associated with
CORBA’s IIOP/GIOP (which fulfilled a similar role but
using a non-standard intermediate representation and
had to be tunneled through HTTP anyway)

– The goal was to have an extension that could be easily
plugged on top of existing middleware platforms to allow
them to interact through the Internet rather than through a
LAN as in the original case. Hence the emphasis on RPC
from the very beginning (essentially all forms of middleware
use RPC at one level or another)

• Eventually SOAP started to be presented as a
generic vehicle for computer driven message
exchanges through the Internet and then it was
opened to support interactions other than RPC and
protocols other then HTTP

SOAP invocation

SOAP history (1)

• The W3C started working on SOAP in 1999.

Originally: Simple Object Access Protocol

• SOAP covers the following main areas:

– Message construct: a message format for one-way
communication describing how a message can be packed
into an XML document

– Processing model: rules for processing a SOAP message
and a simple classification of the entities involved in
processing a SOAP message. Which parts of the messages
should be read by whom and how to react in case the
content is not understood

– Extensibility model: how the basic message construct can
be extended with application specific constructs

SOAP history (2)

• Protocol binding framework: allows SOAP messages

to be transported using different protocols (HTTP,

SMTP, …)

– a concrete binding for HTTP

– conventions on how to turn an RPC call into a SOAP
message and

– back as well as how to implement the RPC style of
interaction

SOAP facts (1)

• SOAP is “a lightweight protocol intended for

exchanging structured information […]”, “a stateless,

one-way message exchange paradigm”

– defines the general format of a message and how to
process it

– RPC is implemented on top of the core specification
following conventions of the “SOAP RPC representation”

SOAP facts (2)

• SOAP ≠ RPC: since Version 1.1, SOAP abstracts

from the RPC programming model

• SOAP ≠ HTTP: since Version 1.1, SOAP abstracts

from the protocol used to transport the messages

– HTTP is one of many possible transports

SOAP message path (1)

• A SOAP message can pass through multiple hops

on the way from the initial sender to the ultimate

receiver

• The entities involved in transporting the message

are called SOAP nodes

• SOAP intermediaries forward the message and

may manipulate it

SOAP message path (2)

• Every SOAP node assumes a certain role which

influences the message processing at the node

FINE

