Lesson 9 - Process languages
(Part II)

Service Oriented Architectures Security
Module 1 - Basic technologies

Unit 5 - BPEL

Ernesto Damiani

Universita di Milano

Data Transfer model (1)

e Data transfers define how (and when) services are
supposed to exchange data
— Whiteboard

= Service invocations read their input and deposit their results in
a collection of variables. Each service invocation defines a
mapping to and from the whiteboard. Data can also be copied
explicitly among variables

- Data flow graph

= Side-effects free, declarative model where services are
connected with data flow dependencies, which define the source
of their input data which is fetched at the appropriate time

Data Transfer model (2)

<containers>
ccontainer name="input” messageType="_">

)

<container name="request” messagelype="_">
<container name="response” messageType="_.">
<container name="output” messageType="._.">
</containers>
<sequence>
<recetve container="input”/>
<assign>
<copy><from container="input”/>
<to container="request’/></copy>
</assign>
<invoke operation="service”
inputContainer="request”
outputContainer="“response”/>

<assign>

<copy><from container="response’/>
<to container="output”/></copy>

</fassign>
<reply container="output”/>
</sequence>

Dataflow graph

) ExampleStockQuoteConvert Input(

."f ™~
usa 1 e
[country symbol
|III .'- \-:
| / \
: { \
| 4 y
’ countryt ‘ country2 J symbol ‘
N\ / |
‘getRate getQuote
|
N . — S
[Result —pr ad———‘ Result‘
o

Datalntegration

™ quote ‘

Exception handling (1)

e Important as service compositions should explicitly
model what to do if a service is not available
(timeout) or if its invocation fails

e Flow-based exception handling uses normal control
flow constructs to branch after a service invocation
has failed

e Try/Catch blocks are used in a similar way to
associate an exception handler to a set of service
Invocations

Exception handling (2)

e Rules may also be associated to a composition in
order to detect global exceptional conditions

6 Service
Exception —
Handler ‘ ‘

Sfe-ole
-

Transaction (1)

e Transactional behavior is modeled by grouping
service invocations and declaring the atomicity and
isolation properties for the group

e In order to support long running transactions, each
service operation can be also associated with a
compensation handler, which is invoked only if the
operation should be undone

e When no failures occur, the composition engine
runs a 2PC protocol with all services of the atomic
region. If a failure occurs, the engine invokes the
compensation handlers of the services which could be
invoked successfully

Transaction (2)

. Atomic Region

Y

®.

>o

Compensation

_. Handler

.
S
O

Exclusive
Region

WS BPEL (1)

e WS-BPEL is a standard proposal for specifying
business process behavior based exclusively on Web
services

e WS-BPEL is a language based on the XML syntax

e It does not directly deal with implementation of the
language but only with the semantics of the
primitives it provides

e The latest version of the specification is 2.0

WS BPEL (2)

e Originated as the fusion of XLANG (Microsoft) and
WSFL (IBM) = as a result, there are formal problems

with the language

e The language is used to define

— executable processes, with the actual interactions among

different services. These processes can implement the
internal business logic of a Web service (Composition)

— abstract processes, modeling the messages exchanged by
the parties involved in a business protocol without revealing
details about the internal implementation (Coordination)

e The goal is to define coordination and composition
of Web services in a portable way

Composing Executable Processes

e Executable Processes describe the composition (or
orchestration) of different Web service interfaces
(WSDL Port Types)

e The result of a composition using BPEL is meant to
be recursively published as a Web service

WSDL

BPEL Composition

WSDL wsDL WSDL WSDL

Using Abstract Processes (1)

e Abstract Processes define constraints on the WSDL
interface of a Web service so that it can be used
correctly

e Application Example: RosettaNetPIPs(Partner
Interface Processes) standardize interfaces and
protocols along an e-Commerce supply chain

e The abstract (public) process for a Web service can
be generalized from the concrete (private)
executable implementation, if this is constructed
using BPEL

Using Abstract Processes (2)

e The abstract process definition can also drive the
implementation of the private executable process
behind a Web service

BPEL
Abstract
Process

Abstraction

Executable
Process

Elements of WS-BPEL (1)

— Partners
— Properties
— Correlation sets
— Variables Scopes
- Fault Handlers
— Compensation Handlers
- Event Handlers
— Activities
= Structured activities
= Simple activities

Elements of WS-BPEL (2)

- These elements are equivalent to declarations in a normal
programming language. They define the way services are
to be called, which data is to be used and which data is to
be treated as stateful

- These elements establish what the process does, how it
reacts under different circumstances (errors, message
arrivals, events, etc.), and how data flows from one step

to the next

Partner Link Types (1)

e The concept of partners is used to define the Web
services that are to be invoked as part of the
process. It is based on three elements:

— Partner Link Type: it contains two PortTypes(WSDL), one
for each of the roles in the partner entry (i.e., one
portTypebelongs to the process itself, the other one is the
portTypeof the service being invoked). Partner link types
are not stored in a process, but usually extend a WSDL
document

— Partner Link: the actual link to the service. This is where the
actual assignment to a binding is made (outside the scope
of BPEL). Several partner links may share the same partner
link type

— Partners: a group of Partner Links (this is an optional
element). A partner link can only appear in one partner

Partner Link Types (2)

Process

Service

\

Partner Dort

Link Type
Type (Interface)

Iniziate
Production
Scheduling

B

Complate
Praduction
Scheduling

Example

Example Partner Links

Process
purchaszOrderProcess

purchaseOrder FT BartnerLink

purchasing
compuiePicePT -
invniceCaltackPT |ilf—
. shippingPT >
L pre——r— P

| ccheduingPT »

Properties (1)

e Properties give a global and abstract definition of
data elements which are intended to be used to
correlate messages with process instances. (e.qg.,
order numbers)

e Property aliases map such properties to specific
message types. This ensures that the same property
can be reused across different messages

Properties (2)

e Correlation sets are a named group of properties
used to uniquely identify a stateful conversation
that is handled by a process. They define a mapping
among data, messages and properties that help a
process instance identify the messages that should
be handled by itself

Correlation sets (1)

e Correlation is used when receiving asynchronous
messages

e Correlation sets are referred from activities which
involve the exchange of a message with external
partners

e The content of each message is checked against the
correlation set to establish the link between the
message and the corresponding process instance

Correlation sets (2)

e A correlation set is initialized once the first
message of the conversation is exchanged and
cannot be changed during the rest of the interaction

e Correlation properties must be set to unique
values among all process instances

Variables and assignment (1)

e Variables can be used to store:

- the content of the SOAP messages that are exchanged with
the partners (with message Typesdefined as part of the
WSDL interface description)

- intermediate, temporary data used in the business logic of
the process to generate messages

— private data that holds the internal state of the process
(e.g., counters)

e Variables are referenced by activities which
exchange messages in order to define from where to
read the content of a message and where the
received message should be stored

Variables and assignment (2)

e The entire content of variables (or only parts) can
also be copied from a different variable with an
<assign> activity

e The <assign> activity can also be used to assign
constant values and apply XPathqueries to
messages in order to extract relevant information

Example: A=B

<assign>
<copy>
<from variable="A"/>
<to variable="B"/>
</copy>
</assign>

e A form of bloc
uses <catch> b

Fault handling

K-based exception handling that
ocks to handle the receipt of fault

MEeSSages or exX

vlicit exceptions (<throw>). Once

an exception is caught, the necessary logic for
correcting failures can be programmed into the
business process

e Fault handlers are a basic component for fault
tolerance and fulfil the same role as exception
handlers in normal programming languages. Every
process needs to have this type of handlers

Compensation

e Additionally, if a failure occurs, already (and
successfully) completed activities can be undone by
using BPEL's advanced rollback capabilities

e Compensation handlers are a legacy of advanced
transaction model sand map very well to the notion
of transactional coordination espoused by WS-
Coordination and WS-Transactions

e Compensation handlers assume the process
contains the entire logic of what is to be done,
something that it is rarely true in complex
processes

Compensation handling example

e An order management process charges the
customer using a credit card service and removes the
ordered item from the inventory service

o If either of the two services fail, the other should be
compensated

Cradit
A e
Service

<scope>

<Invoke> <invoke>

Inventary
Service

Payment Ship [tem

Comp. 1|
Handler 1

ZInva ke ¢invokes

L. . . _<tompensates :_Fault |

Simple activities

e The actual operations the process will complete:

— <receive> blocks until a message is received

- <reply> sends a message in response to a received message
- <invoke> sends a message to invoke an remote operation

- <assign> updates the value of variables

- <wait> suspends execution for a given time period

- <empty> no-op used for synchronization purposes

- <terminate> finishes the process

- <throw>, <rethrow> raises a fault for a fault handler to catch
- <catch>, <catchAll> catches a fault of a given type

- <compensate> undo the effects of completed activities

Structured activities

e Define the control flow dependencies in a hierarchical
manner by nesting the following elements:

<sequence> executes a set of activities one after another
<switch> chooses between a set of activities (v1.1)
<while> repeats depending on certain conditions

<flow> executes a set of parallel activities (with arbitrary
control flow dependencies)

<pick> waits for alternative messages or an alarm and
branches according to the one that arrived first

e <scope> defines a block of activities

Control flow

<flow=

<links:>

<link name="XtoY" /=

<link name="CtoD"/=
<flinks=>

<saquence name="X">
<gource linkMame="xXtoY"/>
<invoke name="4" _/>
Zinvoke name="B" .../>
</sequence>

<sequence name"y" >
<target inkName="XtoY"/>
<receive name="C">
Zgource linkMame="CtoD"/=
<freceive=

<invoke name="E" .../>
<lsequence>

<invoke name="D">
<target linkMame="CtoD"/>
=finvoke=

<fflow=

Control flow links

EXECUTION Wrger
(with links|

eflows

<sequence “X"»

simvoke YA

cinwvoke "B »

XA

B

.G
Y.E /SO,

Execution Order
without links)

A KBS
(Y.C; Y.E) £/
l <link “XtoY"> v
¢sequence "Y"»
creceive “C's ¢link “CtoD™»

cinvolke “E">»

<invoke “D”>

Extensions (1)

e BPEL Extensions

— Several extensions have been proposed to deal with
different aspects that are not supported by the current 2.0
specification

e BPELJ

— Java Code Snippets can be embedded into the BPEL process
definition
— These are used for expressing complex branching (and loop)

conditions, variable initializations and message
transformation

— This extension also defines how a BPEL process can directly
call J2EE components

Extensions (2)

e BPEL4Sub-Processes

— Modularize and reuse process definitions. Define how to call
a process from another one.

e BPEL4PEOPLE

- Human tasks and human workflow support

- The <invoke> activity are tagged with the <staff> element
to model the invocation of the services provided by a human

resource
— Similar to traditional workflow management systems, the
invocation is qualified by describing the organizational role
of the user interacting with the process
R FINE‘ o
“z‘%* '

¢,

"

LS4

