WS-Security Examples

Ernesto Damiani, Fulvio Frati

Universita degli Studi di Milano

Outline

e What is WS-Security

e A simple example
- 1st step: no security
- 2nd step: timestamp
- 3rd step: simple authentication
- 4t step: signature

- 5t step: full security (timestamp, signature,
encryption)

- Other Examples

What is WS-Security?

WS-Security:
e Part of WS-* stack

e SOAP message protection through message integrity,
confidentiality, and single message authentication

o Extensible and flexible (multiple security tokens, trust
domains, signature formats, and encryption technologies)

e a flexible set of mechanisms that can be used to construct a
range of security protocols

Why WS-Security?

e Implement secure soap message
exchange

How to Secure?

1 - Integrity - information is not modified in transit

e XML signature in conjunction with security tokens

e Multiple signature, multiple actors, additional
signature formats

How to Secure?

2 - Confidentiality - only authorized actors or
security token owners can view the data

e XML Encryption in conjunction with security
tokens

e Multiple encryption processes, multiple actors

How to Secure?

3 - Authentication - you are whom you claim to be

e Security Tokens

security Tokens

Unsigned Security Tokens || Signed Security Tokens

= llsername — w809 Certificates
— Kerberos tickets

<S:Envelope>
<S:Header>

<Security
S:actor="..."

S :mustUnderstand="...

</Security>
</S:Header>
<S:Body>...

</S:Body>
</S:Envelope>

">

Syntax

SOAP Envelope

Security Feeder

émhde;

SOAP Body

Setting the Stage

What we need:

Web Container: Apache Tomcat
http://tomcat.apache.org/

Web Services / SOAP / WSDL engine: Apache AXIS2
http://axis.apache.org/axis2/java/core

Web Services security module: Apache Rampart
http://axis.apache.org/axis2/java/rampart/

http://tomcat.apache.org/
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/rampart/

Tutorial Architecture

« Simple Service for adding two numbers

« Five incremental security steps:

No Security

Timestamp only

Simple Authentication

Signature only

Full Security: Timestamp + Signature + Encryption

iAWk

« Modifications on configuration files

10

Service Code

/**
* Secure Service implementation class
*/
public class SecureService {
public int add(int a, int b) {

return a+b;

Manages the business part of the code

e Path /service/SecureService.java

The methods of the class are the methods supplied by the service

The connection between the class and the Service Engine are managed by the
service.xml file

e Path: service/META-INF/service.xml

11

Service code - 2

AXIS2 deploys services in AAR (Axis ARchive) files

AAR files are simple WAR archives that contain service code,
service.xml, MANIFEST.MF, and possible configuration files

AAR are created by the jar Java command

jar -cvf <service name>.aar *

To deploy a service simply copy AAR in services directory of
AXIS2 webapps subfolder

e Path: /var/lib/tomcat8/webapps/AXIS2

12

Basic Service.xml — no security

<service name='"SecureService">
<description>Secure Service</description>

<parameter name="ServiceClass"

locked="false">SecureService</parameter>
<operation name="add">

<messageReceiver

class="org.apache.axis2.rpc.receivers.RPCMessageReceiver" />
</operation>

</service>

o At this level, defines only name of the service, name of the
methods, and type of parameters

- messageReceiver defines the message exchange methodology

13

Client Code

public class SecureServiceClient ({
public static void main (String[] args) throws Exception ({

ConfigurationContext ctx =
ConfigurationContextFactory.createConfigurationContextFromFileSystem

("axis-repo", “axis-repo/conf/axis2.xml”) ;

SecureServiceStub stub = new SecureServiceStub
(ctx,"http://localhost:8080/axis2/services/SecureService") ;

ServiceClient sc = stub. getServiceClient() ;
sc.engageModule ("rampart") ;

int a = 3;

int b = 4;

int result = stub.add(a, b);

System.out.println(a + " + " + b + " = " + result);

14

Client Code - 2

Client code manages the requests of the service

Client configurations are managed by the ConfigurationContext
object

Stub classes are generated by the wsd/2java AXIS2 command
wsdl2java -uri <service address>?wsdl -uw -p <package>

-0 <source directory>

Stub classes replicate the signatures of services’ methods (WSDL)
and manage the connection between client and service

15

Client Code - 3

e The subfolder client/src/axis-repo contains

- conf/AXIS2.xml configuration file: manages the local
configuration of the client - level of security, actions
provided, users, keys, ...

- modules: contains additional local modules to be used by
the client - rampart, rahas, addressing

- keys: contains the user keyrings that contains public-
private key-pairs

16

1st Step — No Security - Messages

e Messages are exchanged as common SOAP envelopes
e command: tcpdump -i lo -A port 8080

<soapenv:Envelope xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Body>
<nsl:add xmlns:nsl="http://ws.apache.org/axis2">
<nsl:args0>3</nsl:args0>
<nsl:argsl>4</nsl:argsl>
</nsl:add>
</soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Body>
<ns:addResponse xmlns:ns="http://ws.apache.org/axis2">
<ns:return>7</ns:return>
</ns:addResponse>
</soapenv:Body>
</soapenv:Envelope>

17

2nd Step - Timestamp

Web services engine requires that incoming messages
includes a Timestamp, and includes a Timestamp in outgoing
messages returned to the client

Modifications:

— Service-side: change action in services.xml
— Client-side: change action in axis2.xm/

18

Create the Keyring

« Keyrings contain public-private key-pairs

« Accessed by special classes in client and services
that contain password to open the keyring and
extract the keys

 Created through the java keytoo/ command

keytool -genkey -keystore mykeys.jks -alias fulvio -keyalg RSA

19

Timestamp - Services.xml

<parameter name="InflowSecurity">
<action>
<items>Timestamp</items>
</action>

</parameter>

<parameter name="OutflowSecurity">
<action>
<items>Timestamp</items>
</action>

</parameter>

20

Timestamp - AXIS2.xml

<parameter name="OutflowSecurity'">
<action>
<items>Timestamp</items>
</action>

</parameter>

<parameter name="InflowSecurity">
<action>
<items>Timestamp</items>
</action>

</parameter>

21

2"d Step - Timestamp - Messages

We used Rampart to add timestamp to SOAP envelopes. They provide a way to limit

the lifespan of messages; Timestamp expires five seconds after the creation of the
message, so if the message is older than that, the message must be rejected.

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0casis-

200401-wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="true">
<wsu:Timestamp

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd" wsu:Id="Timestamp-1">

<wsu:Created>2010-12-10T22:58:45.656Z</wsu:Created>
<wsu:Expires>2010-12-10T23:03:45.656Z2</wsu:Expires>
</wsu:Timestamp></wsse:Security>

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0casis-
200401-wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="true">
<wsu:Timestamp
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd" wsu:Id="Timestamp-2">
<wsu:Created>2010-12-10T22:58:46.296Z</wsu:Created>
<wsu:Expires>2010-12-10T23:03:46.296Z2</wsu:Expires>
</wsu:Timestamp>
<wssell:SignatureConfirmation xmlns:wssell="http://docs.oasis-
open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="SigConf-1" /> </wsse:Security>

22

3rd Step — Simple Authentication

e Grant the access only to authorized users

e Username and password digests are sent in the
header

e Modifications:

— Insert PWCallback classes to access keyring
— Service-side: change action in services.xml
— Client-side: change action in axis2.xml

23

Password Callback class

public class PWCallback implements CallbackHandler {
public void handle(Callback[] callbacks)
throws IOException, UnsupportedCallbackException ({
for (int 1 = 0; i < callbacks.length; i++) {
if (callbacks[i] instanceof WSPasswordCallback) {
WSPasswordCallback pc=(WSPasswordCallback)callbacks[i];
if (pc.getlIdentifer().equals("fulvio")) {
pc.setPassword ("password") ;
} else {

throw new UnsupportedCallbackException(callbacks[i],

"Unknown user") ;

}
} else {

throw new UnsupportedCallbackException (callbacks[i], "Unrecognized
Callback") ;

24

Simple Authentication - services.xml

<!-- SIMPLE AUTHENTICATION -->
<parameter name="InflowSecurity">
<action>
<items>UsernameToken</items>
<passwordCallbackClass>
PWCallback
</passwordCallbackClass>
</action>

</parameter>

25

Simple Authentication - axis2.xml

<!-- SIMPLE AUTHENTICATION -->
<parameter name="OutflowSecurity'">
<action>
<items>UsernameToken</items>
<user>fulvio</user>
<passwordCallbackClass>
client.PWCallback
</passwordCallbackClass>
</action>

</parameter>

26

3rd Step - Simple Authentication - Messages

Username and password are included in the client request

Server response are sent without security

<soapenv:Envelope xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="true">
<wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-1">
<wsse:Username>fulvio</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
username-token-profile-1.0#PasswordDigest">
9Qu+VaRSFI+GriaDvu+A+s+dty4=
</wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-soap-message-security-1.0#Base64Binary">
G6b60ANX3L0b/ tPb5RqymQ==</wsse :Nonce>
<wsu:Created>2012-01-08T10:27:36.421zZ</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<nsl:add xmlns:nsl="http://ws.apache.org/axis2">
<nsl:args0>3</nsl:args0>
<nsl:argsl>4</nsl:argsl>
</nsl:add>
</soapenv :Body>
</soapenv:Envelope>

27

4th Step - Signature

e Signing a message involves creating a version of
the data that's been encrypted in a known way, so
that decrypting it provides a value comparable to
the original

e Create the security.properties file to indicate which
type of encription to exploit

e Modify services.xml and AXIS2.xml to manage
signature

28

org.apache.ws

org.apache
org.apache.ws
org.apache.ws

org.apache.ws

security.properties File

.security.crypto.provider=

.WS.security.components.crypto.Merlin
.security.crypto.merlin.keystore. type=jks
.security.crypto.merlin.keystore.password=password

.security.crypto.merlin. file=mykeys. jks

29

Sighature - services.xml

<parameter name="InflowSecurity"><action>
<items>Signature</items>
<user>fulvio</user>
<passwordCallbackClass>PWCallback</passwordCallbackClass>
<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

<parameter name="OutflowSecurity'"><action>
<items>Signature</items>
<user>fulvio</user>
<passwordCallbackClass>PWCallback</passwordCallbackClass>
<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

30

Sighature — AXIS2.xml

<parameter name="OutflowSecurity'"><action>
<items>Signature</items>
<user>fulvio</user>
<passwordCallbackClass>client.PWCallback</passwordCallbackClass>
<signaturePropFile>axis-repo\\conf\\security.properties</signaturePropFile>
<encryptionUser>fulvio</encryptionUser>
<signatureParts>Body</signatureParts>

</action></parameter>

<parameter name="InflowSecurity"><action>
<items>Signature</items>
<user>fulvio</user>
<passwordCallbackClass>client.PWCallback</passwordCallbackClass>
<signaturePropFile>axis-repo\\conf\\security.properties</signaturePropFile>
<signatureParts>Body</signatureParts>

</action></parameter> .

4th Step - Signature - Messages

e Rampart signs the selected parts of the message and adds the signature. Then, it sends the message

e When the service receives the message, it accesses the keystore to get the public key for that user,
and then verifies the signature.

<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" Id="Signature-1">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="#id-2">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>sDtm6Lc7/amLp576X5cv1NDy2jY¥=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>Z6rgmCJVs5SFyOaAstcDIuHovMoEBoQnW7FgoNVWALtNjp56W1lDYWw+FO9puU4bHVOFF
T1loC+m+¥YQ9qvnklIJijUY7BZxQantAhUiQmXBO95bn0LnEnlmNeem4TdbZSNMxJ1G9JaefHiKZY21FiTUb56vO1l
gttKo3p6aJdJ6gqa63NtA=</ds:SignaturevValue>
<ds:KeyInfo Id="KeyId-B3FDB613E8S8DDOF597A12920233777652">
<wsse:SecurityTokenReference
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd" wsu:Id="STRId-B3FDB613E8DDOF597A12920233777653">
<ds:X509Data><ds :X509IssuerSerial>
<ds :X509IssuerName>CN=fulvio,OU=dti,O=unimi, L=cre,ST=cr,C=it</ds:X509IssuerName>
<ds:X509SerialNumber>1291903493</ds:X509SerialNumber>
</ds:X509IssuerSerial></ds:X509Data>
</wsse:SecurityTokenReference>
</ds:KeyInfo></ds:Signature>

32

5th Step - Full Security

e The message is signed, encrypted, and annotated
with the timestamp

e Encryption obscure information so that competitors
and other users can't read it

e Encryption is add to the application modifying
services.xml and AXIS2.xml

33

Full Security - services.xml

<parameter name="InflowSecurity"><action>
<items>Timestamp Signature Encrypt</items>
<user>fulvio</user>
<passwordCallbackClass>PWCallback</passwordCallbackClass>
<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

<parameter name="OutflowSecurity'"><action>
<items>Timestamp Signature Encrypt</items>
<user>fulvio</user>
<passwordCallbackClass>PWCallback</passwordCallbackClass>
<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

34

Full Security — AXIS2.xml

<parameter name="OutflowSecurity'"><action>
<items>Timestamp Signature Encrypt</items>
<user>fulvio</user>
<passwordCallbackClass>client.PWCallback</passwordCallbackClass>

<signaturePropFile>axis-

repo\\conf\\security.properties</signaturePropFile>
<signatureKeyIdentifier>SKIKeyIdentifier</signatureKeyIdentifier>
<encryptionKeyIdentifier>SKIKeyIdentifier</encryptionKeyIdentifier>
<encryptionUser>fulvio</encryptionUser>
<signatureParts>Body</signatureParts>
<optimizeParts>
//xenc:EncryptedData/xenc:CipherData/xenc:CipherValue
</optimizeParts>

</action></parameter> -

5th Step - Full Security

AXxis2 has replaced the request with an EncryptedData element that includes
information on how the data was encrypted, as well as the actual encrypted
data (in the CypherData and CypherValue) elements

The data was encrypted with a shared key, which means that the message
has to include that key so that it can by decrypted

The shared key has been encrypted with the receiver's public key and
embedded in the Header, in the EncryptedKey element. This key also
includes a Referencelist, which includes a DataReference that points back to
the data this key was used to encrypt

So to reverse direction, the receiver (the server) receives the message, uses
its own private key to decrypt the shared key, and then uses the shared key
to decrypt the body of the message.

36

Summarizing

Security levels are set up with only little changes in the configuration files

By combining with technologies such as XML Signature and XML Encryption and
providing a standard way of presenting that information, WS-Security makes it possible
to protect both incoming and outgoing SOAP messages from several different security
threats

By requiring digital signatures, you can limit access to authorized individuals or
organizations, as well as verifying that information has not been altered in transit

By including encryption, it is possible to prevent data from being seen (or at least
understood) by unintended recipients.

By adding a Timestamp (and signing it) you can prevent messages from being captured
and replayed

’A
Mg’

