
Sicurezza delle Architetture orientate ai Servizi

Ernesto Damiani, Fulvio Frati

Università degli Studi di Milano

WS-Security Examples

Outline

• What is WS-Security

• A simple example

− 1st step: no security

− 2nd step: timestamp

− 3rd step: simple authentication

− 4th step: signature

− 5th step: full security (timestamp, signature,
encryption)

− Other Examples

2

What is WS-Security?

WS-Security:

• Part of WS-* stack

• SOAP message protection through message integrity,
confidentiality, and single message authentication

• Extensible and flexible (multiple security tokens, trust
domains, signature formats, and encryption technologies)

• a flexible set of mechanisms that can be used to construct a
range of security protocols

3

Why WS-Security?

• Implement secure soap message

exchange

4

How to Secure?

1 - Integrity - information is not modified in transit

• XML signature in conjunction with security tokens

• Multiple signature, multiple actors, additional
signature formats

5

How to Secure?

2 - Confidentiality - only authorized actors or

security token owners can view the data

• XML Encryption in conjunction with security
tokens

• Multiple encryption processes, multiple actors

6

How to Secure?

3 - Authentication – you are whom you claim to be

• Security Tokens

7

Syntax

<S:Envelope>

<S:Header>

...

<Security

S:actor="...“

S:mustUnderstand="...">

...

</Security>

...

</S:Header>

<S:Body>…

</S:Body>

</S:Envelope>

8

Setting the Stage

What we need:

• Web Container: Apache Tomcat

http://tomcat.apache.org/

• Web Services / SOAP / WSDL engine: Apache AXIS2

http://axis.apache.org/axis2/java/core/

• Web Services security module: Apache Rampart

http://axis.apache.org/axis2/java/rampart/

9

http://tomcat.apache.org/
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/rampart/

Tutorial Architecture

• Simple Service for adding two numbers

• Five incremental security steps:

1. No Security

2. Timestamp only

3. Simple Authentication

4. Signature only

5. Full Security: Timestamp + Signature + Encryption

• Modifications on configuration files

10

Service Code

/**

* Secure Service implementation class

*/

public class SecureService {

public int add(int a, int b) {

return a+b;

}

}

• Manages the business part of the code

• Path /service/SecureService.java

• The methods of the class are the methods supplied by the service

• The connection between the class and the Service Engine are managed by the

service.xml file

• Path: service/META-INF/service.xml 11

Service code - 2

• AXIS2 deploys services in AAR (Axis ARchive) files

• AAR files are simple WAR archives that contain service code,

service.xml, MANIFEST.MF, and possible configuration files

• AAR are created by the jar Java command

jar -cvf <service name>.aar *

• To deploy a service simply copy AAR in services directory of

AXIS2 webapps subfolder

• Path: /var/lib/tomcat8/webapps/AXIS2

12

Basic Service.xml – no security

<service name="SecureService">

<description>Secure Service</description>

<parameter name="ServiceClass“

locked="false">SecureService</parameter>

<operation name="add">

<messageReceiver

class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>

</service>

• At this level, defines only name of the service, name of the

methods, and type of parameters

• messageReceiver defines the message exchange methodology

13

Client Code

public class SecureServiceClient {

public static void main(String[] args) throws Exception {

ConfigurationContext ctx =

ConfigurationContextFactory.createConfigurationContextFromFileSystem

("axis-repo", “axis-repo/conf/axis2.xml”);

SecureServiceStub stub = new SecureServiceStub

(ctx,"http://localhost:8080/axis2/services/SecureService");

ServiceClient sc = stub._getServiceClient();

sc.engageModule("rampart");

int a = 3;

int b = 4;

int result = stub.add(a, b);

System.out.println(a + " + " + b + " = " + result);

}

}

14

Client Code - 2

• Client code manages the requests of the service

• Client configurations are managed by the ConfigurationContext

object

• Stub classes are generated by the wsdl2java AXIS2 command

wsdl2java -uri <service address>?wsdl -uw -p <package>

-o <source directory>

• Stub classes replicate the signatures of services’ methods (WSDL)

and manage the connection between client and service

15

Client Code - 3

• The subfolder client/src/axis-repo contains

− conf/AXIS2.xml configuration file: manages the local
configuration of the client – level of security, actions
provided, users, keys, …

− modules: contains additional local modules to be used by
the client – rampart, rahas, addressing

− keys: contains the user keyrings that contains public-
private key-pairs

16

1st Step – No Security - Messages

• Messages are exchanged as common SOAP envelopes

• command: tcpdump -i lo -A port 8080

17

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<soapenv:Body>

<ns1:add xmlns:ns1="http://ws.apache.org/axis2">

<ns1:args0>3</ns1:args0>

<ns1:args1>4</ns1:args1>

</ns1:add>

</soapenv:Body>

</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<soapenv:Body>

<ns:addResponse xmlns:ns="http://ws.apache.org/axis2">

<ns:return>7</ns:return>

</ns:addResponse>

</soapenv:Body>

</soapenv:Envelope>

2nd Step - Timestamp

• Web services engine requires that incoming messages

includes a Timestamp, and includes a Timestamp in outgoing

messages returned to the client

• Modifications:

− Service-side: change action in services.xml

− Client-side: change action in axis2.xml

18

Create the Keyring

• Keyrings contain public-private key-pairs

• Accessed by special classes in client and services

that contain password to open the keyring and

extract the keys

• Created through the java keytool command

keytool -genkey -keystore mykeys.jks -alias fulvio –keyalg RSA

19

Timestamp – Services.xml

<parameter name="InflowSecurity">

<action>

<items>Timestamp</items>

</action>

</parameter>

<parameter name="OutflowSecurity">

<action>

<items>Timestamp</items>

</action>

</parameter>

20

Timestamp – AXIS2.xml

<parameter name="OutflowSecurity">

<action>

<items>Timestamp</items>

</action>

</parameter>

<parameter name="InflowSecurity">

<action>

<items>Timestamp</items>

</action>

</parameter>

21

2nd Step – Timestamp - Messages

• We used Rampart to add timestamp to SOAP envelopes. They provide a way to limit

the lifespan of messages; Timestamp expires five seconds after the creation of the

message, so if the message is older than that, the message must be rejected.

22

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="true">

<wsu:Timestamp

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd" wsu:Id="Timestamp-1">

<wsu:Created>2010-12-10T22:58:45.656Z</wsu:Created>

<wsu:Expires>2010-12-10T23:03:45.656Z</wsu:Expires>

</wsu:Timestamp></wsse:Security>

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="true">

<wsu:Timestamp

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-utility-1.0.xsd" wsu:Id="Timestamp-2">

<wsu:Created>2010-12-10T22:58:46.296Z</wsu:Created>

<wsu:Expires>2010-12-10T23:03:46.296Z</wsu:Expires>

</wsu:Timestamp>

<wsse11:SignatureConfirmation xmlns:wsse11="http://docs.oasis-

open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" wsu:Id="SigConf-1" /> </wsse:Security>

3rd Step – Simple Authentication

• Grant the access only to authorized users

• Username and password digests are sent in the

header

• Modifications:

− Insert PWCallback classes to access keyring

− Service-side: change action in services.xml

− Client-side: change action in axis2.xml

23

Password Callback class

public class PWCallback implements CallbackHandler {

public void handle(Callback[] callbacks)

throws IOException, UnsupportedCallbackException {

for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof WSPasswordCallback) {

WSPasswordCallback pc=(WSPasswordCallback)callbacks[i];

if (pc.getIdentifer().equals("fulvio")) {

pc.setPassword("password");

} else {

throw new UnsupportedCallbackException(callbacks[i],

"Unknown user");

}

} else {

throw new UnsupportedCallbackException(callbacks[i],"Unrecognized

Callback");

24

Simple Authentication – services.xml

<!-- SIMPLE AUTHENTICATION -->

<parameter name="InflowSecurity">

<action>

<items>UsernameToken</items>

<passwordCallbackClass>

PWCallback

</passwordCallbackClass>

</action>

</parameter>

25

Simple Authentication – axis2.xml

<!-- SIMPLE AUTHENTICATION -->

<parameter name="OutflowSecurity">

<action>

<items>UsernameToken</items>

<user>fulvio</user>

<passwordCallbackClass>

client.PWCallback

</passwordCallbackClass>

</action>

</parameter>

26

3rd Step – Simple Authentication - Messages

27

• Username and password are included in the client request

• Server response are sent without security

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<soapenv:Header>

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd" soapenv:mustUnderstand="true">

<wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-1">

<wsse:Username>fulvio</wsse:Username>

<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

username-token-profile-1.0#PasswordDigest">

9Qu+VaRSFI+GriaDvu+A+s+dty4=

</wsse:Password>

<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-soap-message-security-1.0#Base64Binary">

G6b6oAnX3L0b/tPb5RqymQ==</wsse:Nonce>

<wsu:Created>2012-01-08T10:27:36.421Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</soapenv:Header>

<soapenv:Body>

<ns1:add xmlns:ns1="http://ws.apache.org/axis2">

<ns1:args0>3</ns1:args0>

<ns1:args1>4</ns1:args1>

</ns1:add>

</soapenv:Body>

</soapenv:Envelope>

4th Step - Signature

• Signing a message involves creating a version of

the data that's been encrypted in a known way, so

that decrypting it provides a value comparable to

the original

• Create the security.properties file to indicate which

type of encription to exploit

• Modify services.xml and AXIS2.xml to manage

signature

28

security.properties File

org.apache.ws.security.crypto.provider=

org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=password

org.apache.ws.security.crypto.merlin.file=mykeys.jks

29

Signature - services.xml

<parameter name="InflowSecurity"><action>

<items>Signature</items>

<user>fulvio</user>

<passwordCallbackClass>PWCallback</passwordCallbackClass>

<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

<parameter name="OutflowSecurity"><action>

<items>Signature</items>

<user>fulvio</user>

<passwordCallbackClass>PWCallback</passwordCallbackClass>

<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

30

Signature – AXIS2.xml

<parameter name="OutflowSecurity"><action>

<items>Signature</items>

<user>fulvio</user>

<passwordCallbackClass>client.PWCallback</passwordCallbackClass>

<signaturePropFile>axis-repo\\conf\\security.properties</signaturePropFile>

<encryptionUser>fulvio</encryptionUser>

<signatureParts>Body</signatureParts>

</action></parameter>

<parameter name="InflowSecurity"><action>

<items>Signature</items>

<user>fulvio</user>

<passwordCallbackClass>client.PWCallback</passwordCallbackClass>

<signaturePropFile>axis-repo\\conf\\security.properties</signaturePropFile>

<signatureParts>Body</signatureParts>

</action></parameter>
31

4th Step – Signature - Messages

• Rampart signs the selected parts of the message and adds the signature. Then, it sends the message

• When the service receives the message, it accesses the keystore to get the public key for that user,

and then verifies the signature.

32

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" Id="Signature-1">

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<ds:Reference URI="#id-2">

<ds:Transforms>

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>sDtm6Lc7/amLp576X5cv1NDy2jY=</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>Z6rgmCJVs5SFyOaAstcDIuHovMoEBoQnW7FgoNVwALtNjp56WlDYWw+F9puU4bHV0FF

TloC+m+YQ9qvnk1IJijUY7BZxQantAhUiQmXB95bn0LnEn1mNeem4TdbZSNMxJlG9JaefHiKZY21FiTUb56vO1

gttKo3p6aJ6qa63NtA=</ds:SignatureValue>

<ds:KeyInfo Id="KeyId-B3FDB613E8DD0F597A12920233777652">

<wsse:SecurityTokenReference

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd" wsu:Id="STRId-B3FDB613E8DD0F597A12920233777653">

<ds:X509Data><ds:X509IssuerSerial>

<ds:X509IssuerName>CN=fulvio,OU=dti,O=unimi,L=cre,ST=cr,C=it</ds:X509IssuerName>

<ds:X509SerialNumber>1291903493</ds:X509SerialNumber>

</ds:X509IssuerSerial></ds:X509Data>

</wsse:SecurityTokenReference>

</ds:KeyInfo></ds:Signature>

5th Step – Full Security

• The message is signed, encrypted, and annotated

with the timestamp

• Encryption obscure information so that competitors

and other users can't read it

• Encryption is add to the application modifying

services.xml and AXIS2.xml

33

Full Security – services.xml

<parameter name="InflowSecurity"><action>

<items>Timestamp Signature Encrypt</items>

<user>fulvio</user>

<passwordCallbackClass>PWCallback</passwordCallbackClass>

<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

<parameter name="OutflowSecurity"><action>

<items>Timestamp Signature Encrypt</items>

<user>fulvio</user>

<passwordCallbackClass>PWCallback</passwordCallbackClass>

<signaturePropFile>security.properties</signaturePropFile>

</action></parameter>

34

Full Security – AXIS2.xml

<parameter name="OutflowSecurity"><action>

<items>Timestamp Signature Encrypt</items>

<user>fulvio</user>

<passwordCallbackClass>client.PWCallback</passwordCallbackClass>

<signaturePropFile>axis-

repo\\conf\\security.properties</signaturePropFile>

<signatureKeyIdentifier>SKIKeyIdentifier</signatureKeyIdentifier>

<encryptionKeyIdentifier>SKIKeyIdentifier</encryptionKeyIdentifier>

<encryptionUser>fulvio</encryptionUser>

<signatureParts>Body</signatureParts>

<optimizeParts>

//xenc:EncryptedData/xenc:CipherData/xenc:CipherValue

</optimizeParts>

</action></parameter>
35

5th Step – Full Security

• Axis2 has replaced the request with an EncryptedData element that includes

information on how the data was encrypted, as well as the actual encrypted

data (in the CypherData and CypherValue) elements

• The data was encrypted with a shared key, which means that the message

has to include that key so that it can by decrypted

• The shared key has been encrypted with the receiver's public key and

embedded in the Header, in the EncryptedKey element. This key also

includes a ReferenceList, which includes a DataReference that points back to

the data this key was used to encrypt

• So to reverse direction, the receiver (the server) receives the message, uses

its own private key to decrypt the shared key, and then uses the shared key

to decrypt the body of the message.

36

Summarizing

FINE

• Security levels are set up with only little changes in the configuration files

• By combining with technologies such as XML Signature and XML Encryption and

providing a standard way of presenting that information, WS-Security makes it possible

to protect both incoming and outgoing SOAP messages from several different security

threats

• By requiring digital signatures, you can limit access to authorized individuals or

organizations, as well as verifying that information has not been altered in transit

• By including encryption, it is possible to prevent data from being seen (or at least

understood) by unintended recipients.

• By adding a Timestamp (and signing it) you can prevent messages from being captured

and replayed

37

