ML Lifecycle

MODEL
MAINTENANCE

I

MODEL
DEPLOYMENT

REQUIREMENTS

—

DATA
MANAGEMENT

!

MODEL
LEARNING

)ﬁ Khalifa University &_oul5d _aola

ku.ac.ae

Al Lifecycle
stages

An activity
repertoire, not a
flowchart

Our Focus:
Training to
Decommissioning

Requirements analysis

Collect training data

Prepare training data

Choose ML method

Develop classifier

Train classifier

Improve classifier

Implement ML system/model

Deploy ML system/model

Re-train/feedback loop

Performance monitoring of ML model

Maintenance

Decommissioning

)E((Khalifa University &_ail5 d aola ku.ac.ae

Threat Modeling for Al

* Reduce the gap between o
security practitioners and and Pt
Al experts via a structured
approach to identifying, @ # 0
quantifying, and addressing Aoy Yoo
threats to Al LANDSCAPE @

PHYSICAL
ATTACKS

 Full technique presented here:
https://github.com/LaraMauri/STRID
E-Al

%(Khalifa University &_o1l5 d_oola

ku.ac.ae

The Threat Modeling Process

Step Description
1 Objectives States the security properties the system should have.
Identification
2 Survey Determines the system’s assets, their interconnections and
connections to outside systems.
3 Decomposition Selects the assets that are relevant for the security analysis.
4 Threat Enumerates threats to the system’s components and assets
[dentification that may cause it to fail to achieve the security objectives.
5 Vulnerahilities Eramines identified threats and determines if known attacks
[dentifications show that the overall system is vulnerable to them.

ldentifying Assets

What Is it that you want to protect?
 Training/Test data
* Inference results (e.g., containing intellectual property)
« Parameters/Hyperparameters (e.d., weigths, loss

function)

*These also count as "assets"
» Storage/data lake
* Machines on the network

ML DATA ASSET MODEL

Model parameters
Hyper-parameters

Trained model

Raw data
Labeled data

Validation data

Model architecture Data owner

Use case
Al developer

Metadata schema .
/ Model provider

Data exploration tools Data collection

Libraries Pre-processing
Visualization .
tools Model tuning

* x

Y enisa

FAILURE MODES

Failure mode refers to how a
device, equipment, or machine
can fall. If there are several
potential ways that something
can go wrong, we say that it

has multiple failure modes. We
can also use the term
‘competing risks.’

Table 1. ML data assets and their failure modes.

ML data asset

Failure mode

Functional regquirements model the do-
main of interest, the problem to be
solved, and the task to be executed by
the ML model. Non-functional require-
ments identify architectural (hardware)
and code (software) needs.

Requirements may fail when they are built in iso-
lation from the circumstances that make the ML
model necessary. Specifically, functional require-
ments about the ML model’s accuracy may fail by
not taking into account the adverse effect of non-
functional properties mandated by regulations and
by not considering the severity of information leaks.

Raw Data refers to any type of informa-
tion gathered at the Data Management
stage, before it is transformed or ana-
lyzed in any way.

Raw data assets fail when they are not sufficiently
representative of the domain or unfit for the ML
model business goal, e.g. due to sample size and
population characteristics. Data size does not al-
ways imply representativeness. If data selection
is biased towards some elements that have simi-
lar characteristics (a phenomenon called selection
bins) then even a large data set will not be rep-
resentative enough. Assessment of data representa-
tiveness cannot be done a priori; it is only possible
after identifying the targeted population and the
purpose for collecting the data. Selection bias has
been described in the scientific literature as due to
malpractice [2].

Labeled Data refers to sets of scalar
or multi-dimensional data items used at
the Model Learning stage. This data is
tagged with informative labels, for the
purpose of training a supervised ML
model.

Labeled data sets fail when enough items are
deleted or omitted, a sufficient number of spurious
labeled data is included into the data set, or enough
labels are modified. When the labeled data set is
used for the purpose of training an ML model, all
such modifications affect the model inference (e.g.,
shifting the model’s classification boundary).

Validation [Data is also used at the
Model Learning stage, but differs from
ordinary labeled data in usage and, usu-
ally, in collection circumstances. Valida-
tion data sets are mostly used to per-
form an evaluation of the ML model in-
training, e.g. by stopping training (early
stopping) when the error on the walida-
tion set increases too much [41], as this
is considered a sign of over-fitting.

Validation data fail when labeled data items are
modified. Maodification of validation data items af-
fects how the error computed on the validation data
set fluctuates during training, and even a single
modification on the validation set may be enough
for introducing a spurious error increase that could
cut short the training. Elimination of outliers in the
wvalidation data set may alleviate/prevent failure.

Augmented Data is labeled data that is
complemented at the Model Tuning stage
by additional data produced by trans-
formations or by generative ML mod-
els. Augmentation increases labeled data
sets’ diversity, which is supposed to pre-
vent over-fitting.

Augmented data sets may fail due to inconsistency
with the training set they are derived from. Heuris-
tic data augmentation schemes are often tuned
manually by humans, and defective augmentation
policies may cause ML models to loose rather than
gaining accuracy from the augmented data.

Held-out Test Cases (HTCs) are inputs
used to test ML models in production, i.e.
in the Model Maintenance stage. HTCs
include special inputs of high interest for
the application.

The rationale for HTCs is that even if an ML model
keeps showing good accuracy, its performance on
specific inputs may become unacceptable. HTCs
fail when the ML model’s accuracy metrics com-
puted on them does not correspond to the business
goals of the application. Careless selection of HT'Cs
has been known to trigger unneeded model retrain-
ing.

Inferences are results computed by ML
models based on real inputs, according to
the task of interest in the Model Deploy-
ment and Model Maintenance stages.

Inferences may fail by showing high entropy, i.e.
conveying little information useful for the ML task
at hand.

)ﬁ[Khalifa University &_oul5d _oola

ku.ac.ae

STRIDE THREATS: GENERIC AND ML-SPECIFIC
DEFINITIONS

Threat

Description

Spoofing Identity

A user takes on the identity of another. For erample, an at-
tacker takes on the identity of an administrator.

Tampering with Data

Information in the system is modified by an attacker. For er-
ample, an attacker changes a data item.

Repudiation

Information about a transaction is deleted in order to deny it
ever took place. For ezample, an attacker deletes a login trans-
action to deny he ever accessed an asset.

Property ML-specific definition

Authenticity The output value delivered by a medel has been verifiably gen-
erated by it.

Integrity Infarmation used or generated throughout a model’s life-cycle

cannot be changed or added to by unauthorized third parties.

Non-repudiation

There is no way to deny that a model’s output has been gen-
erated by it.

Information Disclosure

Sensitive information is stolen and sold for profit. For erample,
information on user behavior is stolen and sold to a competitor.

Denial of Service
(DoS)

Eramines identified threats and determines if known attacks
show that the overall system is vulnerable to them.

Elevation of Privilege

(EoP)

This is a threat similar to spoofing, but instead of taking on
the ID of another, they elevate their own security level to an
administrator.

Confidentiality Using a model to perform an inference ezposes no information
but the model’s input and output.
Availability When presented with inputs, the model computes useful out-

puts, clearly distinguishable from random noise.

Authorization

Only authorized parties can present inputs to the model and
recetve the corresponding outputs.

CIA3-R Hexagon

\\e map the Table 4. Threats vs. CI A* — R properties in STRIDE-AL
STRI DE th reatS Property Threat
to SIX key Authenticity Spoofing
. Integrity Tampering
Secu rlty Non-repudiability Repudiation
p ro p ertl eS Confidentiality Information Disclosure
Availability Denial-of-Service (Do)

Authorization Elevation-of-Privilege (EoP)

)ﬂ(Khalifa University &_o1l5 d_oola

Presentation Title Goes Here

DD Month 20XX

The overall mapping:

Assets, Properties, Threats
and Attacks

Table 6. Mapping data assets’ failure modes to CTA® — R hexagon.

Asset

Properties

Threats

Known attacks

Requirements

Availability

Daos

While no direct attacks to requirements have
been reported, unexpected legal liabilities de-
riving from defective requirements have been
described in a number of concrete cases [4],
including ML models for medical diagnos-
tics.

Raw Data

Authenticity,
Confidentiality,
Availability,
Authorization

Spoofing
Disclosure,
DoS,

EoP?

Attacks by date owners introduce selection
bias on purpose when publishing raw data
in order to affect inference to be drawn on
the data. Reported examples [52] include
companies who release biased raw data with
the hope competitors would use it to train
ML models, causing competitors to diminish
the quality of their own products and con-
sumer confidence in them. In perturbation-
style attacks, the attacker stealthily mod-
iftes raw data to get a desired response
from a production-deployed model [27]. This
compromises the model’s classification ac-
curacy.

Labeled
Data

Authenticity,
Integrity

Spoofing,
Tampering

Append attacks target availability by adding
random samples to the training set to the
point of preventing any model trained on
that data set from computing any mean-
ingful inference. Other modifications to the
training data set (backdoor or insert at-
tacks) jeopardize the ML model’s integrity
by trying to introduce spurious inferences
[11]. Attackers randomly draw new labels
for a part of the training pool to add an in-
wisible watermark that can later be used to
“backdoor” into the model.

Augmented
Data

Integrity,
Availability

Tampering,
Daos

Adversarial data items tailored to compro-
mise ML model inference can be inserted
during data augmentation [17], in order to
make them difficult to detect.

Validation
Data

Integrity,
Availability

Tampering,
DoS

Attacks can shorten the training of the ML
model by compromising just a small frac-
tion of the validation data set. "Adversar-
ial" training data generated by these attacks
are gquite different from genuine training set
data [39].

Held-Out
Test Cases

Integrity,
Availability,
Confidentiality

Tampering,
DS,
Disclosure

Evaluating an ML model’s performance on
HTCs involves reducing all of the informa-
tion contained in the HT'Cs outputs to a sin-
gle number expressing accuracy. The liter-
ature reports slicing attacks [5], which poi-
son the held-out data set to produce mislead-
ing results. Slicing attacks introduce specific
slices of data that doctor the model’s accu-
racy, making it very different from how it
performs on the in-production data set.

Inferences

Authenticity,
Integrity,
Availability,
Authorization

Spoofing,
Tampering,
DoS,

EoP

Inferences need to carry informative con-
tent. The literature reports eavesdropping
attacks (a survey can be found in [24]) to
distributed ML models involving eavesdrop-
ping on inferences.

ku.ac.ae

Documenting Architecture

*Define what the system does and how it Is
used
* Ingestor collects data
e Library trains model (computes parameters)
« Sensor sends input
*Diagram the application
* Show subsystems
« Show lifecycle
* List assets

)ﬂ(Khalifa University &_oul5d _oola

ku.ac.ae

The TOREADOR-LIght Source Case Study

i Asset #3 - DATA: ;
Raw Data {Batch}

Asset #5 DATA
Trammg + Validation Data (Batch)

. Asset #2 - DATA: |
. Raw Data [Stream]

. Asset#4 - DATA: |
 Training Data (Stream) |

TOREADOR Platform

LIGHT ICT Infrastructure

Connector

Temp Eﬂ\ REEEiVEr
A

Storage
Sensors AT
Inputs Delivered
% Agent

Dashboard

.I'"-._ . : r
-".__ - . __.'"
LIGHT Employee " Asset #9 - DATA: |

Inferences [Eatl:h]

: Ass&t #6 - DATA: |
! Input Data (Stream) !

....................... L S ——

Asaet #1 — DATA:
i Excess Raw Data H

Asset #8 - DATA:
Inferences (Stream)

Table 8. Complete mapping for the assets identified in the use case.

Use case asset Properties Threats

#1. Excess Raw Data Authenticity, Spoofing,
Integrity Tampering

#2. Raw Data (Stream) Authenticity, Spoofing,
Integrity Tampering

#3. Raw Data (Batch) Authenticity, Spoofing,
Integrity, Tampering,
Authorization EoP

#4. Training Data (Stream) Authenticity, Spoofing,
Integrity Tampering

#5. Training + Validation Data (Stream) Authenticity, Spoofing,
Integrity, Tampering,
Non-repudiability, Repudiation,
Authorization EoP

#6. Input Data (Stream) Authenticity, Spoofing,
Integrity, Tampering,
Non-repudiability Repudiation

#7. Model Parameters + Hyper-parameters Integrity, Tampering,
Non-repudiability Repudiation

#8. Inferences (Stream) Authenticity, Spoofing,
Integrity, Tampering,
Non-repudiability, Repudiation,
Availability DoS

#9. Inferences (Batch) Authenticity, Spoofing,
Integrity, Tampering,
Availability, Dos,
Authorization EoP

: Asset #7 - MODELS: i
i Model Parameters + Hyper-parameters :

Deco

mposing the Architecture

*Refine the architecture diagram

« Show aut
« Show aut
 Show tec

nentication mechanisms
norization mechanisms

nnologies (e.g., Tensorflow)

* Diagram trust boundaries
* |[dentify entry points

Begintot

hink like an attacker

* Where are the Al model vulnerabilities?

 What am

| going to do about them?

Documenting Threats

Threat target Connections between sensors and ingestor
Risk
Attack techniques Attacker uses sniffer to monitor traffic
Countermeasures Use SSL/TLS to encrypt traffic

| Theftof Inference DataviaKey Steal |
Threat target Sensors
Risk
Attack techniques Attacker physically accesses Root-of-Trust
Countermeasures Surveillance on sensor site

Analyzing Threats:
the Tampering
Threat Tree

Attack the training
stream by
tampering with

data items

OR AND

Connection Attacker has Connection Attacker has
between LIGHT stolen LIGHT between LIGHT stolen

and TOREADOR credentials to and TOREADOR W TOREADOR
unathenticated access unauthenticated credentials to
TOREADOR access LIGHT

Introducing a
security

control=Tree
pruning

Add data items
with random

ETEIS

Attack the training
stream by
tampering with
data items

Data points
modified
randomly or
applying an
algorithm

Labels flipped

ku.ac.ae

Rating Threats

Risk = Probability * Damage Potential

1-10 Scale 1-10 Scale

1 = Least probable
10 = Most probable

1 = Least damage
10 = Most damage

* DREAD model

« Greater granularization of threat potential
» Rates (prioritizes) each threat on scale of 1-15
» Developed and abandoned © by Microsoft, still used by OpenStack

« Simple model, does not directly take into account whether the attack requires a timing
window

)ﬂ[Khalifa University &_oul5d _oola

ku.ac.ae

DREAD

Damage potential

What are the consequences of a successful exploit?

Reproducibility

Would an exploit work every time or only under certain circumstances?

Exploitability

How skilled must an attacker be to exploit the vulnerability?

Affected users

How many users would be affected by a successful exploit?

Discoverability

How likely is it that an attacker will know the vulnerability exists?

ku.ac.ae

Example

Substitution of Training Data by Man-in-the- 3 2 4 2 5 16
Middle

A A A A
Potential for damage is high
(permanent backdoor , etc.)

Data can be substituted any time, but is only
useful once system is deployed

Inserting data in non-authenticated
connection requires moderate skill

All sensors could be affected, but in reality
most won't be unauthenticated

Difficult to discover by testing the model

