STS-BASED MODELS FOR WEB
SERVICE PERFORMANCE EVALUATION

(Presentation at SOA Security Course)

Romaric Sagbo
Ph.D Student

kouessi.sagbo®@unimi.it
SESAR Lab — Dipartimento di Informatica
Universita Degli Studi di Milano

May 30, 2013

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 1/35

OUTLINE

Introduction

Motivations

Framework

STS-based model and its extensions
Implementation

Conclusions

Available thesis

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 2/

Introduction
°

Introduction

Introduction

m Model-Driven Development (MDD) changes the focus of
software development from the code to models [3, 4].

m Model-based approaches allow to better analyse the
non-functional properties.

m Web service performance is a well-recognized problem in SOA
management [5].

m Web service performance evaluation through simulation and
test cases is important.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 3/35

Motivations
°

Motivations

Motivations

m Accurate and rapid evaluation of web services performance is
still a problem.

m Testing phases are time-consuming and costly.

m Difficult to assess the behavior of the web service before the
end of development.

m Lack of framework to study the behavior of the web service
before the development.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 4/35

Framework
°

Framework

Our framework for performance evaluation

Training Data STSg
2]
\ STS-based Model 3
+ transition . . &
i Simulation =\ 9
; lit =\ o
Service TS probabilities —»| Script outeut g g
Interface o + delay utputs(| 2 \35
distributions &]
STS-based 8 |@
F T oaqor Remmmrmmmmm i mmm e O =
Model STS¢ = 5
Service Code o ®
/=
= @
- 5
TS ba.fﬁd Model —»| Test Cases « Fé
+ idioms outputy | 5 =
<
®
=

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 5/35

STS-based models
©00000000000

STS-based model and its extensions

Symbolic Transition System (STS)

Modeling a software/service as a transition system is a traditional
approach used to test functional properties of systems.

m A Symbolic Transition System (STS) is a finite state
automaton that describes the behavior and evolution of a
software/service. It consists of states and transitions between
states, labeled with actions, guards, and update mapping.

m Two types of actions:

m input actions, denoted as ?function<parameters>,
m output actions, denoted as /function<parameters>.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 6/35

STS-based models
0®0000000000

STS-based model and its extensions

Symbolic Transition System (STS) (2)

An STS-based model is formally defined as follows.
Definition (STS,)

A STS is a tuple <§,s1,V,Z,A,—> where:
m S=<si,...,5,> is a set of states, and s; the initial state;
m V is a set of location (internal) variables;

m 7 is a set of interaction variables representing operation inputs
and outputs;

m A is a set of actions (operations);

m — is a transition relation.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 7/35

STS-based models
00®000000000

STS-based model and its extensions

Reference scenario

Real world web service as reference scenario to validate our approach.

m |[FX-based Reverse ATM web service.

m |FX (Interactive Financial Exchange) is an XML specification
which defines the electronic exchange of financial data
between financial institutions, business, and consumers
through Internet.

m The following operations are implemented:

m Signon, which authenticates the users by checking the validity

of their credentials; S
m DebitAdd, which allows authenticated user to withdraw fqé/ \
m CreditAdd, which allows authenticated user to deposit fur&ds zb

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 8/35

STS-based models
000®00000000

STS-based model and its extensions

Reference scenario: STS-based Model

Interface | Implementation
1

2Signof<login,pwd>
L(loginjpwd)!=null] |

2

1signon<resAit,token>

token>|

% Iresultd=ok]

ICheck_Balance<result>
[result==failure]

[amount>0 && tgken!=null] ICheck_Balance<result>
[result==0k]
!DebitAdd<result>

!Check_Money<result>
[result==failure]

2Check_Money<amount,token>

ICreditAdd<result> iChecIlelo::y<result>
result==0

ICreditAdd<result>

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR W TION May 30, 2013 9/35

STS-based models
0000®0000000

STS-based model and its extensions

STS extended for performance monitoring

An STS-based model for performance testing extends the standard
STS-based model of a service with idioms.

m For monitoring the execution and service times.
m For logging.
m For security checks.

The idioms are expressed as annotations to STS.
Ex. Idioms startclock(t) and endclock(t) are added to trigger the
execution and service times.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 10/35

STS-based models
00000e000000

STS-based model and its extensions

STS extended for performance monitoring (2)

An STS-based model extended for performance monitoring is for-
mally defined from Definition 1 as follows.

Definition (STS¢)

An STS-based model extended for testing STS; is a tuple
<8,51,V,T,A,ID, %> where:

m /D is the set of performance idioms;

id L . . L
m 5, with idelD, extends the transition relation in Definition 1
with idioms.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 11/35

STS-based models
000000e00000

STS-based model and its extensions

STS extended for performance monitoring (3)

Interface | Implementation
1
|) |
28 <! ,pwd>

[(login,pwd)!=

i |
startclock(t1)

2
!Sigl tok toke '
[result==fxflure] sMt==
stopclockff1) [resiit==ok] |
dbitAdd<amount,token> ICheck_Balance<result>
[amRunt>0 &r. token!=null] [result==failure]
startyock(t3)|

2Check_Balance<amount,token>

2CreditAdd<amglunt,token>
[amount>0 && foken!=null]
startclock(t2)

ICheck_Balance<result>
[result==0k]
1DebitAdd<result>

tDebitAHd<result>
stopclopk(t3p

| ICheck_Money<result>
[result==failure]

?Check_Money<amount,token>

ICreditAdd<result
stopclock(}2)

ICheck_Money<result>
[result==0k]

ICreditAdd<result>

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR Wi

STS-based models
0000000e0000

STS-based model and its extensions

STS extended for simulation

For simulation purposes, the standard STS model is extended with
transition probabilities and delay distributions.

m The probability to move from one state to another.

m The distribution associated to the delay (waiting time) or the
time needed to complete the task associated to the transition.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 13/35

STS-based models
000000008000

STS-based model and its extensions

STS extended for simulation (2)

An STS-based model extended for simulation is formally defined
from Definition 1 as follows.

Definition (STSs)
An STS-based model for simulation STS; is a tuple

b, dist
<8,5,V.I,A, 2>

m probe[0,1] is a transition probability;

> where:

m distr is a probability distribution of waiting times;

prob,distr . . . C . .
m ——— extends the transition relation in Definition 1 using

probabilities and delay distributions.

i g
O

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 14/35

STS-based models
000000000800

STS-based model and its extensions

STS extended for simulation (3)

Interface | Implementation
1

Signog<login,pwd>
[(login jpwd)!=null] |

toks

1sig b 4
[result==fgfllure] [rqsult==ok] |

?DebitAdd<amount,token> ICheck_Balance<result>
[arjount>0 && token!=null] [result==failure]
p=0.1

2Check_Balance<amount,token>

p=0.
delay in [4ms,7ms]

IDebitAdd<result>

1Check_Money<result>

?Check_Money<amount,token>
=1

p=1 delay in [1ms,4ms]
delay in [0ms,4ms]

ICreditAddlcresult>

ICreditAdd<result>

STS-based models
000000000080

STS-based model and its extensions

XML encoding of the STS

m Enable automatic generation of the performance interceptors,
executed by test drivers, and simulation script.

m Extension of the STS standard XML definition with the
following three XML tags:

m <nsl:idiom>idiom1; idiom2;</nsl:idiom> that allows to
annotate the model with idioms;

m <nsl:probability>value</nsl:probability> that allows to
define the probability associated with state transitions;

m <nsl:distribution>value< /nsl:distribution> that allows to
define the delay distribution associated with state transitio

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 16/35

STS-based models
00000000000e

STS-based model and its extensions

XML encoding of the STS (2)

B XML encoding of the STS extended with probabilities and delay distributions.

<?xml version="1.0" encoding="UTF-8"7>
<ns1:8TS>

<nsl:location>1</nsi:location>

</ns1:messages>

<nsl:switches>
<nsl:switch>

<nsl:location>7</ns1:location>
<nsl:location>7a</ns1:location>
<nsl:location>7b</nsi:location>

rinitialLocation>1</ns1:initialLocation>

:interactionVars>

<nsl:interactionVar>
<ns1:name>token</ns1:name>
<nsl:type>String</nsi:type>

</nsl:interactionVar>

<nsl:interactionVar>
<ns1:name>amount</ns1:name>
<ns1:type>Double</ns1i:type>

</nsl:interactionVar>

<nsl
<ns1

</nsl:interactionVars>
<nsl:messages>
<nsl:message>
<ns1:name>DebitAdd</ns1:name>
<ns1:kind>input</nsi:kind>
<ns1:param>amount</ns1:param>
<ns1:param>token</ns1:param>

<nsl:
<nsl:
<nsl:
<nsl:
<nsl:
<nsl:
<nsl:
<nsl:

from>7</ns1:from>

to>7a</nsl:to>

message>DebitAdd</ns1:message>

kind>input</ns1:kind>

restriction>amount>0 && token!=null</nsl:res
update />

distribution>delay in [Oms,4ms]</nsl:distribution>
probability>1</nsl:probability>

</nsi:switch>
<nsi:switch>

<ns1

<nsl:
<nsl:
<nsl:
<nsl:

<nsl:
<nsl:
<nsl:

</nsl:switch>
</nsl:switches>

STS-BASED MODELS FOR WEB SERVICE P

:from>7a</ns1:from>

to>7b</nsi:to>
message>Check_Balance</ns1:message>
kind>input</ns1:kind>

restriction />

update />

probability>1</nsi: probab111ty>

Romaric Sagbo Ph.D Student

FORMANCE EVALUATION May 30, 20131

Implementation
©00000000000C:

Implementation

Implementation

Performance Interceptors

m Performance monitoring code automatically integrated within
the service code using the STS-based model extended with
idioms.

m Monitoring the performance by observing the service operation
calls and by measuring their response and service times.

m Implementation using the Enterprise Java Bean (EJB)
interceptors.

Simulation Scripts

indicators.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 18/35

Implementation
0®00000000000:
Implementation

EJB performance interceptors

Q@lInterceptors (ExecutionTimeMeasure. class)
public String DebitAdd(Double amount, String token) {
// Your code here

public class ExecutionTimeMeasure {
Q@Aroundlnvoke

public Object ServiceTime(InvocationContext ctx) throws Exception {

long startclock = System.currentTimeMillis();
Object [] parameters = ctx.getParameters();
try {

return ctx.proceed();
} catch (Exception e)

logger.warning (" Error calling ctx.proceed method”);
return null;

} finally {
long stopclock = System.currentTimeMillis() — startclock;

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION

May 30, 2013 19/35

Implementation

Implementation
00®0000000000:

Algorithm for simulation script generation

INPUT: STSs

OUTPUT: Simulation script

MAIN

Let e=(s;,sp) be an edge between two states
s1 and sp and p; := 0.01 the probability
threshold

| STSs = <S, s, V, I, A,
loop_unroll (STSs , pt)

foreach s; € S do

flag(s;) := "Unexplored”

return ProcessState (sp)

prob, delay S =

PROCESS_STATE(s)

if |children(s)| = 0
flag s := " Visited”
else {

if s has flag "Unexplored”
return add_delay (s)

foreach s; € children(s) do
process_state (s;)

}

ADD_DELAY (s)
if |children(s)|
e = (s, children(s))

if e.delay != null

return generate_delay (e.delay)
flag(s) := " Visited”

1 ¢

else {

foreach edge e = (s,s;), (s; € children(s)) do {
if ej.delay != null

return generate_proba_delay(e;.delay, e;.prob)

flag (s) := " Visited”

Romaric Sagbo Ph.D Student

STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION

May 30, 2013 20/35

Implementation
000®000000000:

Implementation

Simulation script generated from our algorithm

public long EvaluateServiceTime() {

long beginT = System.currentTimeMillis(); // Delay method that performs the waiting
Distribution event = new GenerateRandomEvent feature

) public void Delay(Uniform(int start, int end
// transition (7,7a) int time = Uniform(start, end);
Delay (Uniform (0,4)); try {
// transition (7a,7b) Thread.sleep (time);
Delay (Uniform(1,4)); } catch (InterruptedException ex) {
Double pevent = event.nextRandom(); Thread.currentThread () .interrupt();
switch (pevent) {
// transition (7b,7c) and (7c,7) }

case pevent <= 0.1:

Delay (Uniform (1,1));

Delay (Uniform (1,1));

// transition (7b,7d) and (7d,7)

case pevent > 0.1:

Delay (Uniform (4,7));
2,9));

Delay (Uniform ()

}

return System.currentTimeMillis() — beginT;
}

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 21/35

Implementation
0000®00000000

Implementation

Framework STS2JAVA

m This framework allows to generate automatically the
performance monitoring code and the simulation scripts from
the extended STS-based models.

m The STS2JAVA framework implements two modules:

m Testing module;
m Simulation module.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 22/35

Implementation
00000®0000000:

Implementation

Framework STS2JAVA (2)

Performance
Interceptors
Library

¢

Code
Generator

Source Code
annotated with
Performance idioms

Testing
module

Y

A 4

WEB SERVICE

STS MODEL
ENCODED IN STS2JAVA
XML

Simulation
Module

Script Simulation
Generator

A
A 4

Probability distribution
Library

Y

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 23/35

Implementation

000000@000000:
Implementation

Framework STS2JAVA (3)

STS Visualizer
File Help

<1 Open STS Model Y Generate Code Generate Script . Generate Inspector

Qmpoﬂ org.rsagho;
import org.w3c.dom.*;
Q public class STS2Java extends JFrame {

«%‘) public void actionPerformed{dctionEveni event) {

Vizualize the STS Graph

inl value;

s if (event gelSource() == addBuilon) {

if (STS2Java. stsModelPath = muell) {
<ns]:STS>

<nsl:location>1<fns1:location>
<nsl:location>2</ns1:location=
<nsl:initialLocation>1</ns1:initialLocation>
<nsl:locationVars>
<nsl:locationVar>
<nsl:name>saved_s</nsl:name>
<nsltype>enum</ns|:type>

</ns1:STS>

No STS Model

ent STS-BASED MODELS FOR W

TION

May 30, 2013 24/35

Implementation
0000000e00000

Implementation

Plugin STS2JAVA

m Make available our framework STS2JAVA as a plugin for the
main Java IDE, Eclipse and Netbeans.

m Enable the Java IDE to offer the annotation of the web
service code with the performance monitoring code.

m Enable the Java IDE to generate also the performance
interceptors directly from the appropriate STS-based model.

m Generate the simulation scripts within the IDE by choosing
the STS-based model annotated for this goal.

Generate a code template for performance interceptors.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 25/35

Implementation
0000000080000

Implementation

Plugin STS2JAVA (2)

STS2JAVA

Steps Choose your action

1. Choose your action

2 Choose your STS2JAVA PLUGIN
appropriate STS M

3. Generate your

: ; mpor)))
gg‘f‘;‘::::csc' wPigor (*) Generate a simulation script
4. Step #4 () Generate an inspector code

publn

() (O Annotate a method with interceptor
&9 publi

(O Generate an interceptor template
E l
1

sax 1 <inslilocation>
<insl:location™
L </nsi:initialLocation>

Locatio
saVars>
seationVar>

| — (a2)\
Next > Cancel
) SEh——) b

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 26/35

Implementation
0000000008000

Implementation

Experimental results

(ms)

Time

m CreditAdd operation service time
with performance idioms

m CreditAdd operation service time
with simulation script

T T T T T T
J Testing Service Time CreditAdd ——

\H
‘W

1\\

@

/Y

3
T

o
T

Time (ms)

‘Simulation Service Time CreditAdd ———

¥ .

o
M

‘\hi “h”“ “ ‘H

ll %‘v H\‘

‘ f \ .

H

|
x’“ \

i

“‘ M“ ‘L I

0 20

Romaric Sagbo Ph.D Student

STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION

May 30, 2013 27/35

Implementation
0000000000800

Implementation

Experimental results: Comparison

m Comparison of simulation and testing results for CreditAdd

operation
T T T
Simulation Service Time CreditAdd ——
Testing Service Time CreditAdd ——
20 B
15 ’\j B
@
E
o
£
[
10 5
5 i
| | | | | | |
0 20 40 60 80 100 120 140
Request ID

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 28/35

Implementation
00000000000eT:

Implementation

Experimental results: Statistical analysis

m Chi-Square test

To better evaluate the quality of our simulation results, we computed
the statistical distance between the two data (test and simulation).

Table: Distance between the testing and the simulation distributions

Test Cases | Distance x* [18, 19] |

Creditadd | 2.597 —>(P>0.96)
Debitadd | 2.583 —>(P>0.96)

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 29/35

Implementation
000000000000E
Implementation

Summary

Our experimental results show that:

m Simulation scripts can represent a suitable solution for an
early assessment of service performance.

m The performance interceptors provide a good approach to
measure the performance of existing service.

m Both performance interceptors and simulation scripts can be

used to negotiate and evaluate the performance SLAs of the
web service.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 30/35

Conclusions
]

Conclusions

Conclusions

m Our work proves that model-based representation of web
services can be used to effectively assess the services behavior,
as part of the development lifecycle in a partial and
full-knowledge scenarios.

m Our future work will consider evaluation of service
compositions, and a zero-knowledge scenario where service
code and results of real service executions are not yet
available.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 31/35

Available thesis
.

Available thesis

Available thesis

Framework STS2JAVA: This thesis proposes to continue the
development of our framework for automatic generation of the
performance monitoring code and the simulation scripts from the
STS-based models.

Plugin STS2JAVA: This thesis is the extension of the previous one.
It should propose a plugin of our framework STS2JAVA within the
most popular IDEs Netbeans and Eclipse.

Instrumented web service for performance analysis: This thesis
proposes first to review the existing literature on tools for web
performance analysis. Moreover, after analysis, some tools will be
selected and used to measure the performance of a sample set of
services. The results of the different tools will be compared.

Web services crowd-sourcing: This thesis proposes to build a
service dataset composed by the WSDL files of the services

available on the web and generate an instrumented client service o

test their performance.
Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 32/35

References
[1)

References

References |

[1] C. A. Ardagna, E. Damiani and K. A. R. Sagbo. Early Assessment of Service Performance Based on
Simulation. In Proc. of SCC 2013, Santa Clara Marriott, CA, USA, June 2013, to appear.

[2] K. A.R. Sagbo and P. Houngue. Quality architecture for resource allocation in cloud computing. In Proc. of
ESOCC 2012, volume LNCS 7592, pages 154-168. Springer, Bertinoro, Italy, September 2012.

[3] D. C. Petriu. Software model-based performance analysis. John Wiley & Sons, 2010.

[4] C. Pahl, M. Boskovic and W. Hasselbring. Model-Driven Performance Evaluation for Service Engineering. In
Proc. of the 2nd ECOWS Workshop on Web Services Technology, Halle (Saale), Germany, November 2007.

[5] J. Tekli, E. Damiani, R. Chbeir and G. Gianini. Soap processing performance and enhancement. IEEE
Transactions on Services Computing, 5(3):387-403, 2012.

[6] V. Rusu, L. du Bousquet and T. Jéron. An approach to symbolic test generation. In proc. of International
Conference on Integrating Formal Methods (IFM’00), Pages 338-357, November 2000.

[7] L. Frantzen, J. Tretmans and T.A.C. Willemse. Test generation based on symbolic specifications. In
J. Grabowski and B. Nielsen, editors, FATES 2004, volume LNCS 3395, pages 1-15. Springer, September 2005.

[8] L. Frantzen, J. Tretmans and T.A.C. Willemse. A symbolic framework for model-based testing. In Proc. of
FATES/RV 2006, volume LNCS 4262, pages 40-54. Springer, 2006.

[9] J. Tretmans. Model-based testing and some steps towards test-based modelling. In Proc. of SFM 2011,
Bertinoro, Italy, June 2011.

[10] L. Frantzen, J. Tretmans and R. d. Vries. Towards model-based testing of web services. In Proc. of W
2006, Palermo, Italy, June 2006.

[11] A. Bertolino, G. De Angelis, L. Frantzen and A. Polini. Model-Based Generation of Testbeds for Wel il
Services. In Proc. of TESTCOM/FATES 2008, volume LNCS 5047, pages 266—282. Springer, 2008.

ASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATIO May 30, 2013 33/35

References
[1)

References

References |l

[12] M. Aiguier, C. Gaston, P. Le Gall, D. Longuet and A. Touil. A temporal logic for input output symbolic
transition systems. In Proc. of APSEC 2005, Taipei, Taiwan, December 2005.

[13] W. Kehe, W. Zhuo, Z. Xing and M. Gang. Design and implementation of the monitoring system for ejb
applications based on interceptors. In Proc. of ICACTE 2010, Chengdu, China, August 2010.

[14] S. Roubtsov, A. Serebrenik, A. Mazoyer and M. van den Brand. I12sd: Reverse engineering sequence diagrams
from enterprise java beans with interceptors. In Proc. of SCAM 2011, Williamsburg VA, USA, September 2011.

[15] C. Keum, S. Kang and I. Y. Ko. Generating test cases for web services using extended finite state machine. In
Proc. of IFIP TestCom 2006, volume LNCS 3964, pages 103-117. Springer, 2006.

[16] C. Schwarzl, B. K. Aichernig and F. Wotawa. Compositional random testing using extended symbolic
transition systems. In Proc. of IFIP ICTSS 2011, volume LNCS 7019, pages 179-194. Springer, 2011.

[17] R. Elfwing, U. Paulsson and L. Lungberg. Performance of SOAP in Web Service Environment Compared to
CORBA. In Proc. of APSEC 2002, pages 84-. IEEE Computer Society, 2002.

[18] Notes on the Chi-Squared Distribution. http://people.math.gatech.edu/~ecroot/3225/chisquare.pdf
[19] Chi Square table. http://www.medcalc.org/manual/chi-square-table.php

[20] D. M. Endres and J. E. Schinelin. A new metric for probability distributions. IEEE Trans. Inf. Theory, vol
no. 7, pp. 1858-1860, Jul. 2003.

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 34/35

http://people.math.gatech.edu/~ecroot/3225/chisquare.pdf

Questions ?

THANK YOU
MERCI
GRAZIE

Romaric Sagbo Ph.D Student STS-BASED MODELS FOR WEB SERVICE PERFORMANCE EVALUATION = May 30, 2013 35/35

	Introduction
	Introduction

	Motivations
	Framework
	STS-based model and its extensions
	Implementation
	Conclusions
	Available thesis
	References

