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Internship at Microsoft Research?
12 week research projects, undertaken 
at MSR Cambridge, typically by grad 
students mid-way through their PhD.

Goal: complete research project with an 
MSR researcher (and publish if possible):

A. Gordon and R. Pucella, Validating a 
web service security abstraction by 
typing, 2002 ACM Workshop on XML 
Security, Fairfax VA, USA
F. Besson, T. Blanc, C. Fournet, A. 
Gordon, From Stack Inspection to Access 
Control: A Security Analysis for Libraries, 
2004 IEEE CSFW, Asilomar CA, USA

Applications for Summer 2005
are due by 28 February 2005
http://research.microsoft.com/
aboutmsr/jobs/internships/cambridge.aspx

Advertisement
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4th International School on
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Syllabus
Lecture 1, Tuesday 15:00-16:20

Introduction to Web Services

Lecture 2, Tuesday 16:40-18:00
Nominal Calculi and Security

Lecture 3, Wednesday 15:00-16:20
Modelling WS-Security in a Nominal Calculus

Lecture 4, Wednesday 16:40-18:00
Modelling Trust, Secure Conversation, and Policy

The syllabus reflects joint works with M. Abadi, K. 
Bhargavan, R. Corin, C. Fournet, A. Jeffrey, and R. Pucella

Some cryptographic details drawn from M. Kuhn’s security 
course at Cambridge University
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1: Introduction to Web Services
Basics of Web Services

Demo: Calling a Web Service

SOAP-Level Security

Demo: Signing and Encrypting Messages using 
WS-Security, via passwords or public-key crypto

Attacks on Web Services



Part I: Basics of
Web Services

Websites for computers not humans; XML 
versus HTML; SOAP, WSDL, and HTTP; 
current state of adoption
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What’s a Web Service?

“A web service is a web site 
intended for use by computer 
programs instead of human 
beings.” (Barclay et al)

So XML not HTML

Service messages in SOAP format:
Envelope/Header – addressing, security,                                       
and transactional headers
Envelope/Body – actual payload

Service metadata in WSDL format:
For each SOAP endpoint, list of operations
For each operation, request and response types

XMLXML
RequestRequest

Client

Server

XMLXML
ResponseResponse
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1993: Websites for Humans
HTTP: very simple access protocol

Text-based so bulkier than binary; latency insensitive

URLs: pointers to remote documents
Lack referential integrity of familiar pointers

HTML: document model
Mixes raw data with presentational markup

MIME: very coarse type system for web documents
(The Semantic Web initiative: typed pointers, roughly)

CGI: remote procedure calls
But streaming data model, unlike local-area RPC

Broke many of the principles of late 80s/early 90s distributed 
object systems; still, it did ok
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Websites for Computers B.X.E.
Can trace the origins of web services before the 
XML Era: much work on software to access the 
web programmatically

Programmatic browsing: spiders, Cardelli and Davies’
service combinators, …

Every algorithmic behaviour of web browsing should 
be scriptable
URL = pointer + bandwidth

Programmatic data access: “screen-scraping”, 
Perl, Marais’ WebL

Widely downloaded, but didn’t take off
The thing you have to remember about pioneers is 

that a lot of them got shot
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1998: XML
Standard syntax for labelled ordered trees

Two kinds of label: elements and attributes
<MyElement MyAttrib=“fred”>chas</MyElement>

Namespaces for modularity
URI qualifying element and attribute names

Type systems: regular expressions for trees, roughly
DTDs – early, simple, but no namespaces
XML Schema – later, complex, but standard

The one that matters for SOAP web services
Relax NG – simpler, has human readable syntax

Query languages:
XPath – W3C standard
Many PhDs and papers…
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Essential XML

Resembles the official W3C data model, the Infoset

XML intended originally as standard semi-structured data 
model for database integration

XML as a general-purpose messaging format came later
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Websites for Computers X.E.
“XML Web Services” refers to SOAP stack of specs:

SOAP – message format
Syntax of request, response, fault messages

WS-Addressing – message addressing
Syntax of to, from, replyto, etc, headers

WSDL – service description
Interface: function name, parameter and return types

UDDI – service discovery
Search for service by attributes (like Yellow Pages)
Not yet widely used in practice

BPEL4WS – service composition
Programming language for automating business 
processes, such as B2B order processing
Some sort of merger of IBM WSFL, Microsoft XLANG, 
and Sun WSCI … so quite complex
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A Sample Web Service

SOAPSOAP
RequestRequest

Implementation via
proxy class and
HTTP transport

Smart client for 
getting quotes

www.contoso.com

StockService proxy = new StockService();
string[] symbols = {"FABRIKAM", "CONTOSO"};
StockQuote[] quotes = proxy.Request( symbols );

Implementation via
WebService classes

in Web Server

SOAPSOAP
ResponseResponse

[WebMethod]
public StockQuote[] Request(string[] symbols) {
return database.Request(symbols); }

Financial
databaseVendor-neutral 

XML-encoding 
over HTTP

The Internet
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A Sample SOAP Request

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<StockQuoteRequest xmlns ="http://stockservice.contoso.com">
<symbols>
<Symbol>FABRIKAM</Symbol>
<Symbol>CONTOSO</Symbol>

</symbols>
</StockQuoteRequest>

</soap:Body>
</soap:Envelope>

Says: “get me quotes for symbols FABRIKAM and CONTOSO”

XML not meant to be read by humans, so we’ll omit namespace 
info, trailing brackets, and quote strings…
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A Sample SOAP Request

<Envelope>
<Body>
<StockQuoteRequest>
<symbols>
<Symbol>"FABRIKAM"</>
<Symbol>"CONTOSO"</>

Says: “get me quotes for symbols FABRIKAM and CONTOSO”

XML not meant to be read by humans, so we’ll omit namespace 
info, trailing brackets, and quote strings…that’s better



15

A Sample SOAP Response

<Envelope>
<Header>
<Timestamp>
<Created>2003-03-11T23:36:06Z</>
<Expires>2003-03-11T23:41:06Z</>

<Body>
<StockQuotes>
<StockQuote>
<Symbol>
"FABRIKAM"

<Last>
"120"

...

Unlike the client making the request, the server has included a 
timestamp in the optional Header

Optional header

Mandatory body
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WSDL
Web Services Description Language

Early version in 2000, 
Like IDL in CORBA/DCOM, etc, published by a server, 
and consumed by client to construct proxy
Most of what you need to know to consume a service

But nothing about security, for example

A WSDL document has 5 kinds of named description
Type: most commonly an XML Schema
Message: type for the body of a SOAP envelope
Port type: set of operations (function signatures) with 
input/output message types
Binding: concrete transport protocol for a port type, e.g., 
SOAP over HTTP, HTTP GET, HTTP POST
Service: set of ports, each a binding plus address
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WSDL for the Sample (1)
<definitions>

<types>
<schema>

<element name="StockQuoteRequest">
<complexType>

<sequence>
<element minOccurs="1" maxOccurs="1“

name="symbols" type="ArrayOfString">
<complexType name="ArrayOfString">

<sequence>
<element minOccurs="0" maxOccurs="unbounded“

name="Symbol" type="string">
<element name="StockQuotes">

<complexType>
<sequence>

<element minOccurs="0" maxOccurs="unbounded“
name="StockQuote" type="StockQuote">

<complexType name="StockQuote">
<sequence>

<element minOccurs="0" maxOccurs="1" name="Symbol" type="s:string">
<element minOccurs="1" maxOccurs="1" name="Last" type="s:double">
...

StockQuoteRequest ::=
<StockQuoteRequest>
<symbols>
*<Symbol>string</>

StockQuotes ::=
<StockQuotes>
<StockQuote>
?<Symbol>string</>
<Last>double</>

The descriptions begins by 
declaring types for request and 
response XML, using XML Schema
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WSDL for the Sample (2)
...

<message name="StockQuoteRequestSoapIn">
<part name="parameters" element="StockQuoteRequest">

<message name="StockQuoteRequestSoapOut">
<part name="parameters" element="StockQuotes">

<portType name="StockServiceSoap">
<operation name="StockQuoteRequest">

<input message="stockQuoteRequestSoapIn">
<output message="StockQuoteRequestSoapOut">

<binding name="StockServiceSoap" type="StockServiceSoap">
<binding transport="http://schemas.xmlsoap.org/soap/http" style="document">
<operation name="StockQuoteRequest">

<operation soapAction="http://stockservice.contoso.com/StockQuoteRequest“
style="document">

<input><body use="literal">
<output><body use="literal">

<service name="StockService">
<port name="StockServiceSoap" binding="StockServiceSoap">

<address location="http://localhost/.../UsernameSigningService.asmx">

Request and 
response messages

Input/Output association

Binding determines 
transport (http) and 
data encoding styles

Finally, service 
associates a transport 
address, port-type, 

and transport binding



Demo: Calling               
a Web Service

High-level RPC model; SOAP messages; 
WSDL descriptions

Next: A couple of common misconceptions, 
and what actually is new here.



20

“SOAP” Not Tied to Objects
You’d be forgiven for thinking otherwise

At the start, 1998, “Simple Object Access Protocol”
By 2003, SOAP 1.2, “SOAP not spelt out”, just a name

Externally, in fact, SOAP is not object-oriented
No instances, allocation, de-allocation
No distributed garbage collection
No classes or inheritance
No state at SOAP level—but see OGSI for stateful grids

Internally, SOAP processors may be object-oriented
Code your service in any language you like
Don Box “Objects are to services what ICs are to devices”
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“WS” Not Tied to the Web
Originally, web services were generalization of CGI

Seen as “RPC over HTTP via XML” (Dave Winer, 27-Feb-98)
Navigating firewalls via port 80 an explicit goal

In fact, SOAP based on asynchronous messaging
RPC composition of two symmetric single-shot messages

SOAP allows for multiple transports
HTTP—still the common case
TCP—web services without a web server!
Message Queues—common in enterprise data centres
SMTP—easily supports mobile users

SOAP allows for multiple intermediaries
Firewalls between trust domains
Gateways between transports, eg, SOAP-Mail
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Usage on Internet & Intranets
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For instance, graph shows 
data collected by daily 
runs of a Google client

By 2004, Amazon, eBay, 
Google, Microsoft, ...  all 
export public web services

Moreover, many more 
private web services 

deployed to link systems 
within intranets 
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Web Services: What’s New?
Though their core is roughly XML-encoded RPC – rather old! –
what’s new about SOAP web services is the combination of:

Vendor-neutral, Internet-scale, high-level tools

Signs of fervour,
Wide support from commercial & OSS suppliers
Weekly news of progress at OASIS and W3C
Applications stretching from devices to the grid

yet reasons for caution,
Cost of SOAP encoding?
Lack of SOAP security?
Proliferation of competing specs?

and some competition,
Fielding’s REST: HTTP-based web services 
ebXML: XML version of earlier UN EDI format



Part II: WS-Security
WS-Security specifies how to achieve message-level security by 
embedding crypto into SOAP messages

It builds on the XML-Enc and XML-DSig standards

http://www.oasis-
open.org/committees/download.php/5941/oasis-200401-wss-
soap-message-security-1.0.pdf
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The 2002 Security Story
The 2002 best practice was to build secure web 
services using an SSL (as in HTTPS) transport

SSL gives transport- not application-level security
Messages secured point-to-point not end-to-end 
Messages cannot securely be filtered or routed
Messages not encrypted in files or databases
Moreover, SSL has scalability problems

Party line (aka Web Services Security Roadmap) 
security within SOAP envelopes is better:

For end-to-end, application-level security, independent of 
underlying transports
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Since 2002…
IBM/MS plus others publish specs…

Security Roadmap, Apr 2002
WS-Security spec, Apr 2002
WS-Trust, WS-SecurityPolicy, …, Dec 2002
“Secure, Reliable, Transacted Web Services”, Sep 2003
OASIS standard: SOAP Message Security 1.0, May 2004

and release various implementations…
MS WSE (Web Service Enhancements)

1.0, Dec 2002, implements WS-Security, etc
2.0, May 2004, implements policy driven security, etc

Other products from IBM and others
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WS-Security
SOAP Envelope/Header/Security header includes:

Timestamp
To help prevent replay attacks

Tokens identifying principals and keys
Username token: name and password
X509: name and public-key
Others including Kerberos tickets, and session keys

Signatures
Syntax given by XML-DSIG standard
Bind together list of message elements, with key 
derived from a security token

Encrypted Keys
Syntax given by XML-ENC standard

Various message elements may be encrypted
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WS-Security: Syntax Summary

Security ::= <Security ?Actor> *SecurityElement </>
SecurityElement ::=

<UsernameToken>
<Username>String</>
?<Password Type=“PasswordType”>String</>
?<Created>String</>
?<Nonce>Base64Binary</>

| <BinarySecurityToken>Base64Binary</>
| <SecurityTokenReference>

<Reference URI=“Uri”>
| <KeyInfo>*KeyInfoItem</>
| <Signature>SignedInfo SignatureValue</>
| <ReferenceList>+<DataReference URI=“Uri”/></>
| EncryptedKey
| EncryptedData

Security element is 
child of SOAP Header

UsernameToken
identifies particular user

BinarySecurityToken
embeds an existing 

format such as an X509 
public-key certificate, or a 

Kerberos certificate
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Structure of an XML Signature
Signature/SignedInfo

Elements specifying a canonicalization algorithm 
(typically exc-c14n) and a signature algorithm (typically 
hmac-sha1 or rsa-sha1)
Elements referring to other parts of the message, and 
including their hashes

Signature/SignatureValue
Outcome of applying the signature algorithm and key, to 
the canonicalized SignedInfo

Signature/KeyInfo
Pointer to signing key, such as a key derived from a 
user’s password
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Secure Hash Functions
A hash function is a pseudo random function mapping an 
arbitrary length input to n bits

Additionally, a secure hash function satisfies:
One-way: For given y, computationally infeasible to find 
x with y=h(x)
Weak collision resistance: For given x, computationally 
infeasible to find x’ with h(x)=h(x’)
Collision resistance: It is computationally infeasible to 
find any x, x’ with h(x)=h(x’)

Examples: MD5 (n=128), SHA-1 (n=160)

In Dolev-Yao formal models, a secure hash function is 
represented as a symbolic constructor with no inverse
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<Envelope>
<Header>

<Security>
<UsernameToken Id=1>

<Username>"adg"
<Nonce>"mTbzQM84RkFqza+lIes/xw=="
<Created>"2004-09-01T13:31:50Z"

<Signature>
<SignedInfo>

<SignatureMethod Algorithm=hmac-sha1>
<Reference URI=#2>

<DigestValue>"U9sBHidIkVvKA4vZo0gGKxMhA1g=“
<SignatureValue>"8/ohMBZ5JwzYyu+POU/v879R01s="
<KeyInfo>

<SecurityTokenReference>
<Reference URI=#1 ValueType=UsernameToken>

<Body Id=2>
<StockQuoteRequest>

<symbols>
<Symbol>"FABRIKAM"
<Symbol>"CONTOSO"

(1) Password-Based Signature
UsernameToken assumes 

both parties know adg’s
secret password p

Each DigestValue
is the sha1 hash of 

the URI target

hmacsha1(key, SignedInfo) where 
key≈psha1(p+nonce+created)
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<Envelope>
<Header>

<Action Id=1> "http://stockservice.contoso.com/wse/samples/2003/06/StockQuoteRequest"
<MessageID Id=2> "uuid:abc4946b-112f-4a26-b923-4ffc948c15ef"
<ReplyTo Id=3> <Address> "http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous"
<To Id=4> "http://localhost/UsernameSignCodeService/UsernameSigningService.asmx"
<Security mustUnderstand="1">

<Timestamp Id=5>
<Created> "2004-09-01T13:31:50Z"
<Expires> "2004-09-01T13:32:50Z"

<UsernameToken Id=7>
<Username> "adg"
<Nonce> "mTbzQM84RkFqza+lIes/xw=="
<Created> "2004-09-01T13:31:50Z"

<Signature>
<SignedInfo>

<CanonicalizationMethod Algorithm=exc-c14n>
<SignatureMethod Algorithm=hmac-sha1>
<Reference URI=#1> ...
<Reference URI=#2> ...
<Reference URI=#3> ...
<Reference URI=#4> ...
<Reference URI=#5> ...
<Reference URI=#6> ...

<SignatureValue>
"8/ohMBZ5JwzYyu+POU/v879R01s="

<KeyInfo>
<SecurityTokenReference>

<Reference URI=#7 ValueType=UsernameToken>
<Body Id=6>

<StockQuoteRequest>
<symbols>

<Symbol>  "FABRIKAM"
<Symbol>  "CONTOSO"

Signing Multiple Elements

To prevent replays, 
need to sign 

Timestamp and 
MessageId

To prevent 
redirections, 

need to sign To 
and Action

Actually, to prevent various 
XML rewriting attacks, it’s 
necessary to co-sign other 

message parts with the body



Demo: Signing
with WS-Security

To try this at home, you need:

Windows XP Pro (not Home Edition)

Visual Studio .NET or Visual Studio .NET 2003

WSE http://msdn.microsoft.com/webservices/building/wse/default.aspx
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Encryption Algorithms
Symmetric cryptography uses a single key for both 
encryption and decryption

US Data Encryption Standard (DES): IBM, 1977, 56 bits
US Advanced Encryption Standard (AES): “Rijndael”, KU 
Leuven, 2000, 128 bits

Asymmetric cryptography uses a key pair: a public 
key for encryption, and a private key for decryption

Rivest, Shamir, Adelman (RSA): 1977, various key lengths 
RSA decryption and encryption commute, so that 
“decryption” with private key is a signature, that may be 
verified by “encrypting” with public key
Asymmetric operations orders of magnitude slower than 
symmetric, so efficient to encrypt a message with a fresh 
symmetric key K, and then asymmetrically encrypt K.
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X.509 Public Key Certificates
The X.509 standard is a remnant of the now 
abandoned early 80s Open Systems Interconnection 
(OSI) project, but is now widely used with Internet 
standards such as SSL/TLS.

An X.509 certificate binds a public key to a human-
readable subject name, and is signed by an issuer.

An X.509 cert may include the following fields:
issuer's and subject's name (an X.500 directory name)
validity period (start and end date in UTC)
subject's public key (algorithm and public key data)
issuer’s and subject’s generic name (eg domain, URI)
identifier for issuer’s policy (how was the identity verified?)
issuer’s signature for the entire certificate
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<Envelope>
<Header>

<Security>
<BinarySecurityToken ValueType=X509v3 Id=1>

"MIIBxDCCAW6gAwIBAgIQxUSXFzWJYYtOZnmmuOMK..."
<Signature>

<SignedInfo>
<SignatureMethod Algorithm=rsa-sha1>
<Reference URI=#2>

<DigestValue>"U9sBHidIkVvKA4vZo0gGKxMhA1g=“
<SignatureValue>"8/ohMBZ5JwzYyu+POU/v879R01s="
<KeyInfo>

<SecurityTokenReference>
<Reference URI=#1 ValueType=X509v3>

<Body Id=2>
<StockQuoteRequest>

<symbols>
<Symbol>"FABRIKAM"
<Symbol>"CONTOSO"

(2) X.509-Based Signature
X.509 is an ASN.1 format 
not XML, so needs to be 

binary encoded

rsasha1(key, SignedInfo) where 
key is public key in X.509 cert
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<Envelope>
<Header>
<Security>

<EncryptedKey>
<EncryptionMethod Algorithm=rsa-1_5>
<KeyInfo>

<SecurityTokenReference>
<KeyIdentifier ValueType=X509SubjectKeyIdentifier>

"bBwPfItvKp3b6TNDq+14qs58VJQ="
<CipherData>

<CipherValue>
"gXWRbUNSo7H5EeAO9GhE7nrq5VdBTjScMFbiftmW..."

<ReferenceList>
<DataReference URI=#2>

<Body>
<EncryptedData Id=2 Type=Content>

<EncryptionMethod Algorithm=aes128-cbc>
<CipherData>

<CipherValue>
"v8XMS3XmttksWJDTnCJ86lxPW1L0cA+s16nFQgNM..."

(3) X.509-Based Encryption

rsa-enc(key, K) 
where key is the 

server’s public key 
and K is a fresh key

aes-enc(body, K)
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Attacks on SOAP security
Web services vulnerable to same sorts of attacks 
as conventional websites

Buffer overrun attacks, “SQL injection” attacks, etc
Existing “web application” security tools also applicable 
to web services; see eg Scambay, Shema Hacking 
Web Applications Exposed (2002)

Moreover, there is a range of potential 
Needham-Schroeder attacks on SOAP messages

In our example, neither <To> nor <Action> is signed, 
so message for one server could be replayed to 
another
WS-Security needs to be flexible to support 
interoperability, and hazy requirements ... but 
flexibility is usually the enemy of security
We have found a range of such problems in sample 
code, thus motivating our research on theory and tools
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An XML Rewriting Attack

From: AliceFrom: Alice
To: BookshopTo: Bookshop
Action: Action: ““Buy CharlieBuy Charlie’’s books book””
(signed by Alice)(signed by Alice)

Alice’s laptop Alice’s bookshop
(Web Service)

Someone
on the net
(Charlie?)

Sent: MondaySent: Monday
From: AliceFrom: Alice
To: BankTo: Bank
Action: Action: ““Pay Charlie $20Pay Charlie $20””
(signed by Alice)(signed by Alice)

Sent: TuesdaySent: Tuesday
From: AliceFrom: Alice
To: BankTo: Bank
Action: Action: ““Buy CharlieBuy Charlie’’s books book””
(signed by Alice)(signed by Alice)

Sent: WednesdaySent: Wednesday
From: AliceFrom: Alice
To: BookshopTo: Bookshop
Action: Action: ““Buy CharlieBuy Charlie’’s books book””
(signed by Alice)(signed by Alice)

Alter and replay envelopes
to confuse participants
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Alice’s laptop Alice’s bookshop
(Web Service)

Someone
on the net
(Charlie?)

Another XML Rewriting Attack

From: AliceFrom: Alice
To: BookshopTo: Bookshop
““Publish this storyPublish this story””
(encrypted for bookshop)(encrypted for bookshop)
(signed by Alice)(signed by Alice)

From: CharlieFrom: Charlie
To: BookshopTo: Bookshop
““Publish this storyPublish this story””
(encrypted for bookshop)(encrypted for bookshop)
(signed by Charlie)(signed by Charlie)

Take credit for 
someone else’s data...
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Lecture 1: Summary
SOAP and WSDL implement a fairly standard RPC 
mechanism on top of HTTP

but that has achieved unprecedented interoperability, 
and works on a global scale,
and indeed goes beyond RPC to arbitrary messaging

XML-DSIG, XML-ENC, and WS-Security are a basis for end-
to-end security guarantees, from encryption, signatures, and 
embedded security tokens;

novel features include abstraction from underlying crypto 
technologies, and flexibility of signatures

XML or not, new crypto protocols are often wrong
Lecture 2: nominal calculi and security
Lectures 3 & 4: application to SOAP-level security
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Lecture 1: Resources
Cardelli and Marais websites, for service combinators, and WebL

http://www.luca.demon.co.uk/
http://www.hannesmarais.com/

Standards tracks and whitepaper
http://www.w3.org/2002/ws/
http://www.oasis-open.org
http://msdn.microsoft.com/webservices/understanding/specs/default.aspx

Abiteboul of INRIA and Lehman of IBM, on web services:
http://www-rocq.inria.fr/~abitebou/PRESENTATION/WebServices-EDBT02.pdf
http://www.btw2003.de/proceedings/proceedings.en.shtml

My Top Three Web Service Blogs...
http://www.gotdotnet.com/team/dbox/rss.aspx
http://weblogs.cs.cornell.edu/AllThingsDistributed/index.rdf
http://www.scottishlass.co.uk/rss.xml

...and my aggregate feed
http://www.bloglines.com/public/adg



End of 
Lecture 1 
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2: Nominal Calculi and Security
Cryptographic Protocols and Attacks

Nominal Calculi

Crypto Protocols in Nominal Calculi

Application – A WS Security Abstraction

Cryptyc, Authenticity by Typing

Validating our Abstraction



Part I:
Crypto Protocols
and Attacks

Crypto protocols were invented long before 
web services

Protocols are quite short, and are often 
specified by message sequences.

Even assuming perfect crypto algorithms, 
replay and impersonation attacks are possible.
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Ex I: Woo and Lam (1991)

Principal A wishes to prove its presence to 
principal B, via an authentication server S

Although A and B have no keys in common, the 
protocol can exploit secret keys KAS and KBS that 
A and B share with S

PDA A
knows KAS

Gateway B
knows KBS

Server S
knows KAS

and KBS
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Ex I: Message Sequence

{NB}KASA → B:Message 3
NBB → A:Message 2
AA → B:Message 1

{NB}KBSS → B:Message 5
B,{A,{NB}KAS}KBSB → S:Message 4

Message 5 meant to prove to B that A is currently 
running the protocol

But it doesn’t mention A, so by manipulating parallel 
sessions, an attacker C may login as A
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Attacking Ex I

1. C→B: A

2. B→C: NBA

3. C→B: {NBA}KCS

4. B→S: B,{A,{NBA}KCS}KBS

5. S→B: {…}KBS

1. C→B: C

2. B→C: NBC

3. C→B: {NBA}KCS

4. B→S: B,{C,{NBA}KCS}KBS

5. S→B: {NBA}KBS

Here A is offline, but insider C runs two parallel 
sessions which end with B believing A has logged in.

To fix, include the identity of A in messages 3 and 5.
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A Potted History

A B

C

Hi Bob,Hi Bob,
love Alicelove Alice

Hate you, Hate you, 
Bob! Bob! --AliceAlice

We assume that an intruder can interpose 
a computer on all communication paths, 
and thus can alter or copy parts of 
messages, replay messages, or emit false 
material.  While this may seem an extreme 
view, it is the only safe one when 
designing authentication protocols.

Needham and Schroeder CACM (1978)

1978: N&S propose authentication protocols for “large networks of computers”
1981: Denning and Sacco find attack found on N&S symmetric key protocol
1983: Dolev and Yao first formalize secrecy properties wrt N&S threat model, using formal algebra
1987: Burrows, Abadi, Needham invent authentication logic; neither sound nor complete, but useful
1994: Hickman (Netscape) invents SSL; holes in v2, but v3 fixes these, very widely deployed
1994: Ylonen invents SSH; holes in v1, but v2 good, very widely deployed
1995: Abadi, Anderson, Needham, et al propose various informal “robustness principles”
1995: Lowe finds insider attack on N&S asymmetric protocol; rejuvenates interest in FMs
circa 1999: Several FMs for “D&Y problem”: tradeoff between accuracy and approximation
circa 2004: Many FMs now developed; several deliver both accuracy and automation



50

Informal Methods

Principle 1 Every message should say what it means: the 
interpretation of the message should depend only on its 
content.  It should be possible to write down a straightforward 
English sentence describing the content—though if there is a 
suitable formalism available that is good too.

Abadi and Needham Prudent engineering practice for crypto protocols 1995

For instance, in our corrected protocol, Message 5 can be read 
“server S vouches that A encrypted NB intending to talk to B”

{B,NB}KASA → B:Message 3

{A,NB}KBSS → B:Message 5
B,{A,{B,NB}KAS}KBSB → S:Message 4

Experts’ principles codified in articles and textbooks since mid-90s:
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Formal Methods
Dolev&Yao first formalize N&S model in early 80s

Various FMs now exist to check properties such as:
Message authentication – against impersonated access
Message integrity – against parameter manipulation
Message confidentiality – against eavesdropping
Message freshness – against replays
Identity protection – preserve privacy of participants

Certain things typically outside scope of these FMs:
Weak passwords – but recent progress by Lowe, Cohen, ...
Code defects – buffer overruns in C need different FMs
Denial of service – seems hard in practice and in theory
“Computational” models of crypto – but now active area



Part II: Nominal Calculi

A pure name is “nothing but a bit pattern that is an 
identifier, and is only useful for comparing for identity with 
other bit patterns” (Needham 1989).

A common abstraction in computer science, formalized 
usefully and elegantly in the pi-calculus and its variants.

Since keys and nonces are pure names, security protocols 
are an important application are for nominal calculi.
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The Pi-Calculus and Mobility
The pi-calculus is a tiny yet highly expressive 
concurrent language, with precise semantics, rich 
theory, and several implementations

Milner, Parrow, Walker (1989); Milner (1999); Sangiorgi 
and Walker (2000)
Computation is name-passing between concurrent 
processes on named channels
Each name has a mobile scope, that tracks the processes 
that can and cannot communicate on the name
Equational laws determine scope mobility and allow 
garbage collection of deadlocked processes
Pi has spawned a family of related nominal calculi



Syntax of the Pi-Calculus

Names x,y,z are the only data
Processes P,Q,R are the only computations
Beware: non-standard syntax

namesx,y,z

new name in scope Pnew x; P

output tuple on xout x(y1,…,yn)
input tuple off xin x(z1,…, zn); P

compositionP | Q
replication!P
inactivitystop

processesP,Q,R ::=
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Example: Lists as Processes
A list located at p awaits repeatedly for a pair of probes (c0,c1)

if the list is empty, it outputs on c0
if the list is hd consed onto t, it outputs (h,t) on c1

To return results from processes, use continuations:

Outcome of computation (including deadlocked processes)
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Example: Garbage Collection
Up to structural congruence of processes, can re-arrange 
scopes, provided no names are captured:

Up to behavioural equivalence of processes, can delete a 
restriction around a blocked input (twice here)

Structural congruence identifies processes “we’d never 
want to distinguish”, used to define reduction

Behavioural equivalences comes in many varieties, 
derived from the operational semantics 
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Example: Nondeterminism
The lists below may be appended in either order

Pict (Pierce, Turner 1995) is a typed programming 
language based on the pi-calculus and essentially this 
style of programming
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Semantics of the Pi-Calculus

P 7 Q ⇒ in x(z1,…,zn);P 7 in x(z1,…,zn);Q
P 7 Q ⇒ ! P 7 ! Q 

P 7 Q ⇒ new(x);P 7 new(x);Q
P 7 Q ⇒ P | R 7 Q | R 

! stop 7 stop

new(x);stop 7 stop

new(x);(P | Q) 7 P | new(x);Q if xÌfn(P)
new(x);new(y);P 7 new(y);new(x);P

! P 7 P | ! P

P 7 Q, Q 7 R ⇒ P 7 R 
P 7 Q ⇒ Q 7 P 
P 7 P

out x(y1,…,yn) | in x(z1,…,zn);P → P{z1←y1,…,zn←yn}

P’ 7 P, P → Q, Q 7 Q’ ⇒ P’ → Q’

P → Q ⇒ new(x);P → new(x);Q
P → Q ⇒ P | R → Q | R 

P | stop 7 P
P | Q 7 Q | P
(P | Q) | R 7 P | (Q | R)

P 7 Q means P and Q
are equivalent states

P → Q means state P
reduces to state Q
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Some Applications of Pi Family

Pi as formal semantics

Functions, objects (pi)

Crypto (spi, applied pi)

Async, distributed 
programming and 
algorithms (pi, join, dpi)

Thread, device mobility, 
security perimeters 
(ambients, seal)

Unifying frameworks for 
nominal calculi (action 
calculi, bigraphs)

Biomolecular modelling 
(stochastic pi, brane)

Pi as source code

Pict: channel types, 
concurrency, objects

JoCaml: distribution

Nomadic Pict: mobile 
agents, transactions

Iota: untyped XML 
scripting for home area 
networking

XLANG, BPEL: web 
services composition

Cω: C# + XML + join

Pi as a formal method

Equivalences and 
refinements (eg applied 
to security)

Logics: extensional eg
HML, intensional eg
spatial logics

Behavioural types: 
graph types, secrecy & 
authenticity types 
(Cryptyc), CCS procs as 
types for pi procs
(Behave)



Part III: Crypto Protocols 
in Nominal Calculi

We might use any one of a great many formalisms.

As it’s the basis of several type systems for security, we pick 
the untyped spi-calculus
M. Abadi and A. D. Gordon, A calculus for cryptographic protocols: 
the spi calculus. Information and Computation 148:1-70 (1999)

Related process calculi include the sjoin-calculus, the applied 
pi-calculus, and several others
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The Spi-Calculus in One Page

The statement decrypt M is {x}N;P means:

“if M is {x}N for some x, run P”

Decryption evolves according to the rule:

decrypt {L}N is {x}N;P → P{x←L}
Decryption requires having the key N
Decryption with the wrong key gets stuck

There is no way to extract N from {L}N

There is no way to extract {L’}N from {L}N

(Symmetric, authenticated encryption)
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Ex II: Specifying Authenticity

NBB → A:Message 1
{msg,NB}KABA → B:Message 2

(Sender sent msg)A beginsEvent 1

(Sender sent msg)B endsEvent 2

Each end-event has preceding begin-event with same label

Attacks show up as violations of these assertions

Named correspondence assertions by Woo and Lam, but also 
agreements by Lowe.  Two varieties:

Each begin justifies a single end  (one-to-one / injective)
When desired to rule out replay attacks

Each begin justifies many ends:  (one-to-many / non-injective)
When replays do not matter, or prevented outside formalism
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Authenticity Specified in Spi

send(msg,k) @
in net(no);
begin “Sender sent msg”;
out net ({msg,no}k);

recv(k) @
new(no); out net(no); in net(u);
decrypt u is {msg,no’}k;
check no’ is no; end “Sender sent msg”;

sys(msg1,…,msgn) @
new(k);
(send(msg1,k) | … | send(msgn,k) |
! recv(k))

A
B
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Secrecy Specified in Spi

For all (msgL1, msgR1), …, (msgLn, msgRn),
sys(msgL1,…,msgLn) 3 sys(msgR1,…,msgRn)

No opponent O should be able to distinguish runs 
carrying different messages.
We interpret P3Q as may-testing equivalence.

A test is a process O plus a channel c.
A process passes a test (O,c) iff P|O may eventually 
communicate on c.
Two processes equivalent iff they pass the same tests.

In fact, our example fails this spec…
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A Small Information Leak

Consider sys(msg1,msg2). The opponent certainly 
cannot obtain either of the messages in the clear, but 
can it tell whether they are equal?

One may reason that A’s inclusion of the nonces 
always distinguishes {msg1,no1}k and {msg2,no2}k

But the opponent may feed its own nonce no twice to 
A, cause A to emit {msg1,no}k and {msg2,no}k , and 
hence can tell whether msg1=msg2

To fix this, A sends {msg,no,co}k for some fresh 
confounder co instead of simply {msg,no}k
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Many Variations Are Possible

There is a vast literature on equationally defined 
information flow, e.g., “non-interference properties”

Focardi and Gorrieri (JCS 1994) were pioneers in 
the setting of process calculi

As usual, the formalism (choice of equivalence and 
operational semantics) may abstract too much

Our spec is insensitive to covert timing channels
Mitchell et al study more refined calculi (CCS98…)

Still, we now have specs of authenticity and secrecy…



Part IV: Application –
A Web Service
Security Abstraction

With Riccardo Pucella

An initial experiment to verify and implement a design of 
a security abstraction for web services
A. D. Gordon and R. Pucella, Validating a web service security 
abstraction by typing. In 2002 ACM Workshop on XML Security, 
pp18-29, Fairfax VA, November 22, 2002. 
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Application-Level Abstraction
Each web method has one of three security levels

None
Request and response sent in the clear

Auth
Request identity & integrity authenticated to callee
Response identity & integrity authenticated to caller

AuthEnc
Same as Auth, plus
Both request and response bodies encrypted

Akin to, for example, secure network objects (van 
Doorn, Abadi, Burrows, Wobber, 1996)

Enough to support various authorisation mechanisms
Assume in the following, each method AuthEnc
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An Example Web Invocation
Home banking is a likely application for web services

Alice has an account at Bob’s bank
Alice’s account number is 12345
Bob’s site is w=http://BobsBank.com/BankingService

One of Bob’s web methods:

Alice’s secure RPC to Bob: w:balance(12345)

class BankingServiceClass {
Id CallerId;
[WebMethod]
[SecurityLevel=AuthEnc]
Num balance(Num account) {
if (account==12345 && this.CallerId==Alice)
return €100 … }}
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A SOAP-Level Implementation

B, {res(w,balance(amount),t,NA)}KABB → A:Message 4

A, {req(w,balance(acc),t,NB)}KAB,NAA → B:Message 3

w, res(getNonce(NB))B → A:Message 2

w, req(getNonce())A → B:Message 1

We assume key KAB shared between A and B
In paper version, we consider key establishment with certs

Messages 1/2 establish security context: fresh nonce
Could avoid first roundtrip by including timestamps

Messages 3/4 are the actual call/return

Implemented using SOAP extensions in VS.NET
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An AuthEnc Envelope
<?xml version="1.0" encoding="utf-8" ?> 
<soap:Envelope …>
<soap:Header>
<DSHeader …>
<callerid>Alice</callerid> 
<calleeid>Bob</calleeid> 
<np>13</np> 
<nq>-1</nq> 
<signature>4E:00:6F:00</signature> 

</DSHeader>
</soap:Header>
<soap:Body>

9D:8F:95:2B:BC:60:B1:73:A7:C4:82:F5:39:20:97:F7:69:71:66:
D3:A3:A0:90:B9:9B:FE:71:0A:65:C1:EF:EE:99:CB:4D:8A:40:37:
CA:1E:D0:03:50:34:76:8C:E3:F3:30:DD:C9:34:19:D4:04:CB:39:
7D:1A:84:2F:CA:30:DA:68:7E:E1:CB:07:9C:EB:79:F9:E9:4B:47:
5B:94:56:D7:22:0E:02:CD:AA:F5:D3:40:C1:EC:13:FB:B9:E6:4F:
13:CD:70:FD:BA:18:80:FC:50:F3:75:F2:2F:95:50:5D:41:7E:C8:
8B:BB:AB:76:C9:59:BA:E2:3B:E5:4D:79:71:E4:AD:18:5A:4B:EA:
29:17:30:90:66:08:27:ED:B4:BD:2E:89:06:6D:0B:56:40:43:35:
A1:77:AE:12:7E:4B:19:26:B5:24:1A:D9:67:3D:A0:9E

</soap:Body> 
</soap:Envelope>
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What Do We Have So Far?
We have outlined a new “security abstraction”

Defined by custom attributes on web methods
Implemented by SOAP extensions

Next, to validate using Cryptyc:
We formalise the abstraction as an object calculus
We specify its semantics by translation into spi, a process 
representation of the Dolev-Yao model
Since the translation preserves typings, attacks 
representable in spi are impossible
Verification of formal model, not running code



Part V: Cryptyc, 
Authenticity by Typing

With Alan Jeffrey (De Paul University)

Tool typechecks authenticity and secrecy properties of 
cryptographic protocols in spi

Series of papers develops the theory

A. D. Gordon and A. Jeffrey, Authenticity by typing for security 
protocols. Journal of Computer Security 11(4):451-521, 2003. 
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How to Type Authenticity
We introduce a type and effect system

Judgment E ∫ M : T means message M has type T

Judgment E ∫ P : [L1,…,Ln] means process P has effect [L1,…,Ln], 
a (multiset) bound on the events that P may end but not begin

If L:T then end L : [L]
If L:T and P:e then begin L;P : e−[L]

Metaphor: end’s and begin’s like costs and benefits that must 
be balanced.

Goal: assign a complete system the empty effect.



75

Types for Symmetric Crypto
We include standard types such as dependent pairs and tagged 

unions

Messages of type Un are data known to the untyped opponent

Messages of type Key(T) are names used as symmetric keys for 
encrypting type T
If M:T and N:Key(T) then {M}N:Un
If M:Un and N:Key(T) and x:T ∫ P : e ,                      

then decrypt M as {x:T}N;P : e

Messages of type Nonce[L1,…,Ln] prove begin-events labelled 
L1,…,Ln have previously occurred
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Authenticity by Typing

Corollary: example robustly safe via:

Theorem (Robust Safety)
If x1,…,xn:Un ∫ P : [] then P is robustly safe.

A process P is safe iff in every execution trace, there is a distinct 
begin L for every end L.

(Formalizes one-to-one correspondences; can do one-to-many also)

A process P is robustly safe iff for all begin- and end-free 
opponents O, P|O is safe.

Msg @ Un
MyNonce(m) @ Nonce [(Sender sent m)]
MyKey @ Key (m:Msg, MyNonce(m))
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Typing Ex I (Woo and Lam)

“A proving presence to B”B endsEvent 2

“A proving presence to B”A beginsEvent 1

{tag3(B,NB)}KASA → B:Message 3
NBB → A:Message 2
AA → B:Message 1

{tag5(A,NB)}KBSS → B:Message 5
B,{tag4(A, {tag3(B,NB)}KAS)}KBSB → S:Message 4

PrincipalKey(p) @ Key(Cipher3(p) + Cipher4(p) + Cipher5(p))
Cipher3(A) @ (B:Un, NB:Nonce[“A proving presence to B”])
Cipher4(B) @ (A:Un, cipher:Un)  --seems redundant

Cipher5(B) @ (A:Un, NB:Nonce[“A proving presence to B”])
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Typing Ex I, again

“A proving presence to B”B endsEvent 2

“A proving presence to B”A beginsEvent 1

{tag3(B,NB)}KASA → B:Message 3
NBB → A:Message 2
AA → B:Message 1

{tag5(A,NB)}KBSS → B:Message 5
A,{tag3(B,NB)}KASB → S:Message 4

PrincipalKey(p) @ Key(Cipher3(p) + Cipher5(p))
Cipher3(A) @ (B:Un, NB:Nonce[“A proving presence to B”])

Cipher5(B) @ (A:Un, NB:Nonce[“A proving presence to B”])
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Back to our SOAP protocol

B, {res(w,N,t,NA)}KABB → A:Message 4

res(A,B,w,N,t)A endsEvent 4

res(A,B,w,N,t)B beginsEvent 3

req(A,B,w,M,t)B endsEvent 2

req(A,B,w,M,t)A beginsEvent 1

A, {req(w,M,t,NB)}KAB,NAA → B:Message 3

w, res(getNonce(NB))B → A:Message 2

w, req(getNonce())A → B:Message 1

SharedKey(a,b) @ Key(Union(
req(w:Un, m:Un, t:Un, Nb:Nonce[end req(a,b,w,m,t)]),
res(w:Un, n:Un, t:Un, Na:Nonce[end res(a,b,w,n,t)])))

Specify authenticity via 
event correspondences

Verify via generic types for 
crypto keys and nonces



Part VI: Validating our 
Abstraction

With Riccardo Pucella.

We formalize the application-level within an object 
calculus, and the SOAP-level within the spi-calculus.

The validation is a type-preserving semantics of the 
object calculus in the spi-calculus.
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A Calculus of Web Services
Object calculi are OO-langs in miniature

Small enough for formal proof
Big enough for study of specific features
Abadi and Cardelli “A Theory of Objects”; Igarashi, Pierce, 
and Wadler FJ; Gordon and Syme BIL; …

We include an application-level view of a web service
A service is neither an object nor a value

WSDL neither object-oriented nor higher-order
But a service implemented via a server class

Recall the BankingServiceClass
And may be accessed directly or via a proxy class



variablex,y,z

objectnew c(v1,…, vn)

variablex
nullnull

principalp

valueu,v ::=

method callv.l(u1,…,un)

conditionalif u=v then a else b

valuev
letlet x=a in b

field lookupv.f

service callw:l(u1,…,un)

method bodya,b ::=

signaturesig ::= B(A1 x1,…,An xn)

principalId
objectc

typeA, B ::=

service namew∈ WebService
principal namep∈ Prin

field namef∈ Field
method namel∈ Meth

class namec∈ Class

For each class c∈ Class,
map fields(c) defines field names and types
map methods(c) defines method names, signatures, and bodies

For each service w∈ WebService,
principal owner(w) hosts the service
class class(w) implements the service

constraint: fields(w) = Id CallerId
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An Informal Semantics
How to evaluate a body b as principal p:

To evaluate v, terminate with v at once
To evaluate let x=a in b{x}, first evaluate a as p to v, then 
evaluate b{v} as p
To evaluate if u=v then atrue else afalse, evaluate au=v as p
To evaluate v.f, when v=new c(v1,…, vn) and f is the ith field 
of c, terminate with vi
To evaluate v.l(u1,…,un), when v=new c(v1,…, vn) and l in c
has signature B(A1 x1,…,An xn) and body b{this,x1,…,xn}, 
evaluate b{v,u1,…,un} as p
To evaluate w:l(u1,…,un), evaluate the method call new
class(w)(p).l(u1,…,un) as owner(w)
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A Formal Semantics
We map type B to spi message type [B]
We map value v to spi message [v]
We map body b running as p to spi process [b]pk where k is 
a continuation channel – like encoding of lists

We represent SOAP envelopes as spi messages

We represent security guarantees by embedding begin- and 
end-assertions

These security guarantees (that is, robust safety) follow as a 
corollary of type preservation

Theorem (Type Preservation)
If E ∫ b : B then [E], k:Ch([B]) ∫ [b]pk : []
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Assessment
Strengths

Developing implementation in parallel with theory – firm basis 
for answering “is this secure” – is there an exploit?
Developing high-level abstraction of SOAP processing – for sake 
of usability, security should be expressed at application level

Weaknesses
Calculus stateless and sequential – too abstract to be useful?
Spec just message authentication, not correlation
Non-standard message formats, not WS-Security
Hiding details of SOAP message format – not clear which 
details are safe to omit
Cryptyc threat model does not include insider attacks –
unrealistic in loosely coupled web services world
Model-based formal method – not directly checking actual 
source code, so gap between spec and implementation
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Lecture 2: Summary
Crypto protocols are hard to get right

Like programming Satan’s not Murphy’s computer

Nominal calculi help by making protocol behaviour 
and intended properties explicit 

Type systems like Cryptyc give strong guarantees, 
without bounding principals or sessions

But annotations required, no insider attacks

Application of Cryptyc to web services allows 
verification of design, but has weaknesses

Still, inspired current work, presented in Lectures 3 and 4 
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Lecture 2: Resources
Pi Calculus

R. Milner, Communicating and Mobile Systems: the Pi-Calculus
(CUP, 1999)
D. Sangiorgi, D. Walker, The Pi Calculus: A Theory of Mobile 
Systems (CUP, 2003)

Cryptyc
http://cryptyc.cs.depaul.edu
http://research.microsoft.com/~adg/cryptyc.htm

Recent related work: Jif, Apollo, FlowCaml
http://www.cs.cornell.edu/jif/
http://www.cis.upenn.edu/~stevez/sol/
http://cristal.inria.fr/~simonet/soft/flowcaml/

Critique of “attacker is the network” model
Eric Rescorla “The Internet is Too Secure Already”

http://www.rtfm.com/TooSecure-usenix.pdf



End of 
Lecture 2 
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3: Modelling WS-Security
An RPC protocol

Terms and predicates in TulaFale

Modelling the RPC messages

Processes and assertions in TulaFale

Modelling and verifying the protocol

K. Bhargavan, C. Fournet, and A. Gordon, A Semantics for Web Services 
Authentication.  In 2004 ACM Symposium on Principles of Programming 
Languages, pp198-209, Venice, January 14-16, 2004.

K. Bhargavan, C. Fournet, A. Gordon, and R. Pucella, TulaFale: A Security 
Tool for Web Services.  In International Symposium on Formal Methods for 
Components and Objects (FMCO 2003), Leiden.  Springer LNCS, Revised 
Lectures, 2004. 
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Samoa Project: Summary
If misconfigured or mis-implemented, WS-Security 
protocols vulnerable to XML rewriting attacks

We found such attacks on code that uses MS WSE toolkit

TulaFale tool can show the absence of such attacks 
given a description of the protocol

First analysis tool for XML-based crypto protocols
Automatic analysis of hand-written models by appeal to 
Blanchet’s ProVerif tool for applied pi

Generator and Analyzer tools compile TulaFale scripts 
from declarative XML policy files that drive WSE 2.0

Hence, can directly analyze WSE 2.0 configurations
We believe to be first source-based formal verification of 
interoperable implementation of crypto protocols

This 
lecture

Next 
lecture
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TulaFale: A Security Tool for WS

OK, or
No because…

WSE 1.0 out of the box

What TulaFale does

CLR
(IL)

SOAP 
processing

WSE 1.0
ProVerif
analyzer

TulaFale
C# code

TulaFale
script

predicate
library

intermediate pi-calculus

In work published at 
FMCO’03 and POPL’04, we 
designed and implemented 
TulaFale, and hand-wrote 
models for series of WSE 

protocols

TulaFale = pi + XML + predicates + assertions



Part I: An RPC Protocol

We describe an RPC protocol as easily coded using the 
WSE implementation of WS-Security
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Model and Goals
A typical system model:

A single certification authority (CA) issuing X.509 public-key 
certificates for services, signed with the CA's private key.
Two servers, each equipped with a public key certified by the CA
and exporting an arbitrary number of web services
Multiple clients, acting on behalf of human users

Threat model: an active attacker, in control of network, but 
knowing none of:

The private key of the CA
The private key of any public key certified by the CA
The password of any user in the database

Security goals: authentication of each message, and correlation 
of request and response, but not confidentiality
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Client(kr,U) Server(sx,cert,S)

sx = subject’s private key
cert = X509 certificate,

signed by kr,
that subj owns sx

S = <Service>
<To>uri</>
<Action>ac</>
<Subject>subj</></>

kr = public key of CA
U = <User>

<Username>u</>
<Password>pwd</></>

Client and Server Processes

Our system model includes arbitrarily many such clients and servers; 
in fact, attacker can control how many are generated



Client(kr,U) Server(sx,cert,S)

isMsg1(-,U,S,id1,t1,b1)

isMsg2(-,S,id1,id2,t2,b2)

begin C1 (U,S,id1,t1,b1) 

end C1 (U,S,id1,t1,b1) 

begin C2 (U,S,id1,t1,b1,id2,t2,b2) 

end C2 (U,S,id1,t1,b1,id2,t2,b2) 

An intended run of the protocol

Msg 1 includes signature of 
S,id1,t1,b1 under key derived 
from username token for U

Msg 2 includes signature 
of id1,id2,t2,b2 under 

public key of S



OpponentClient(kr,U) Server(sx,cert,S)

isMsg1(-,U,S, 
id1,t1,b1)

Suppose a client does not sign the message identifier id1...

begin C1 (U,S,id1,t1,b1) 

end C1 (U,S,id1,t1,b1) 

id1:=id2, 
Replay isMsg1(-,U,S, 

id2,t1,b1)

end C1 (U,S,id2,t1,b1) 

Copy

Pair (id1,t1) uniquely identifies the message only if id1 and t1 are signed

We found and fixed faults like this in preliminary WSE samples



Part II: Terms and 
Predicates in TulaFale

TulaFale = pi + XML + predicates + assertions
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XML Elements and Attributes

Represents valid, parsed XML

Adapted from Siméon and Wadler's model (POPL’03)

Resembles the W3C Infoset recommendation
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Ex: Outline of Message 1

As in Lecture 1: no namespaces, all string data quoted, 
trailing tags omitted
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Sorts for Terms
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Function Symbols

The equations 
associated with 

destructors induce 
an equational

theory on terms

Destructors 
typically 

invoked by 
pattern 

matching
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Function Symbols for Crypto

No destructors for 
hash functions, etc

pk(s) is public key 
corresponding to 
the private key s

As often with Dolev-Yao formalisms, not attempting 
to capture all algebraic properties of RSA
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Logical Predicates

Given certain implementability constraints, these logic 
programs given formal semantics in Abadi and Fournet’s
applied pi calculus (see our POPL’04 paper)
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Ex: RSA Encryption

Direct RSA encryption and decryption, 
illustrating computation by pattern-matching
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Ex: X509 Certs and Tokens
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Ex: Username Tokens
Entry in an 

internal 
database, 

never sent on 
the wire

WS-Security 
security token 
signifying a 
user entry



107

<Envelope>
<Header>

<Security>
<UsernameToken Id=1>

<Username>"adg"
<Nonce>"mTbzQM84RkFqza+lIes/xw=="
<Created>"2004-09-01T13:31:50Z"

<Signature>
<SignedInfo>

<SignatureMethod Algorithm=hmac-sha1>
<Reference URI=#2>

<DigestValue>"U9sBHidIkVvKA4vZo0gGKxMhA1g=“
<SignatureValue>"8/ohMBZ5JwzYyu+POU/v879R01s="
<KeyInfo>

<SecurityTokenReference>
<Reference URI=#1 ValueType=UsernameToken>

<Body Id=2>
<StockQuoteRequest>

<symbols>
<Symbol>"FABRIKAM"
<Symbol>"CONTOSO"

Recall Structure of Signatures
UsernameToken assumes 

both parties know adg’s
secret password p

Each DigestValue
is the sha1 hash of 

the URI target

hmacsha1(key, SignedInfo) where 
key≈psha1(p+nonce+created)
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Ex: Document Refs

The group bound together in a signature is given by a finite 
sequence of references

URI points to an item t, typically a node in the envelope
DigestValue is a secure hash of the item

ref(t,r) means that r is such a reference to t

When checking a signature, we know what’s to be signed; 
the URI attribute is an untrusted processing hint

<SignedInfo>
<Reference URI="#..."><DigestValue>Ego0...</>
<Reference URI="#..."><DigestValue>5GHl...</>
<Reference URI="#..."><DigestValue>efb0...</>
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Formalizing Signatures
<Signature>

<SignedInfo>
<Reference URI="#..."><DigestValue>dFGb...</>…

<SignatureValue>vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<KeyInfo><SecurityTokenReference><Reference URI="#..."/>



Part III: Modelling the 
RPC Messages 

Constructing and checking XML messages by logic 
programming



Client(kr,U) Server(sx,cert,S)

isMsg1(-,U,S,id1,t1,b1)

isMsg2(-,S,id1,id2,t2,b2)

begin C1 (U,S,id1,t1,b1) 

end C1 (U,S,id1,t1,b1) 

begin C2 (U,S,id1,t1,b1,id2,t2,b2) 

end C2 (U,S,id1,t1,b1,id2,t2,b2) 

Msg 1 includes signature of 
S,id1,t1,b1 under key derived 
from username token for U

Msg 2 includes signature 
of id1,id2,t2,b2 under 

public key of S

The protocol again...
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Goal C1
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Structure of Message 1

Single predicate 
used in two 

different modalities 
to construct and 
parse Message 1

TulaFale Wishlist:
syntax to indicate 

modes of parameters...
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Making Message 1

Username token 
encrypted to prevent 
dictionary attacks on 

weak passwords
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Checking Message 1
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Goal C2



117

Structure of Message 2
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Checking Message 1



Part IV: Processes and 
Assertions in TulaFale 

TulaFale = pi + XML + predicates + assertions
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Processes and Assertions



Part V: Modelling and 
Verifying the Protocol 

The top-level process and its verification
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System and Attacker

The attacker is an arbitrary process running alongside this system

It can send and receive on the soap channel

Moreover, it can generate arbitrarily many users and services, 
and initiate arbitrarily many sessions with payload data of its 
choosing
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Attacker Generates Users
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Attacker Generates Services
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Attacker Initiates Clients
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Attacker Initiates Servers



Demo

Verification of C1 and C2 by TulaFale/ProVerif

Next: some variations.



OpponentClient(kr,U) Server(sx,cert,S)

isMsg2(-,S,id1,
id2,t2,b2)

begin C2 (U,S,id1,t1,b1,id2,t2,b2) 

end C2 (U,S,id1,t1’,b1’,id2,t2,b2) 

If the client doesn’t generate fresh id1’s, then message 
correlation (C2) fails; the tools easily find this bug

isMsg1(-,U,S, 
id1,t1,b1)

isMsg1(-,U,S, 
id1,t1’,b1’)

isMsg2(-,S,id1,
id2,t2,b2)

SOAP 
Fault

Call 1

Call 2,   
re-using 

id1

What else might go wrong?



Opponent aka OClient(kr,u) Server(sx,cert,S)

isMsg2(-,S,id1,
id2,t2,b2)

begin C2 (O,S,id1,t1,b1’,id2,t2,b2) 

end C2 (U,S,id1,t1,b1,id2,t2,b2) 

If one or more passwords are compromised, there is an 
insider attack on message correlation; more extensive 

changes to the script are needed to model this

isMsg1(-,U,S, 
id1,t1,b1)

isMsg2(-,S,id1,
id2,t2,b2)

isMsg1(-,O,S, 
id1,t1,b1’)

The practical 
import of this is 
going to vary, 
but could be 
significant; eg
suppose b2 is a 
credit history

What  about insider attacks?
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Lecture 3: Summary
Successfully bridged gap between theoretical 
pi threat model and XML used in WS-Security 
protocols

Driven by actual user code
Faithful to XML message format
Found attacks within threat model
Proved theorems about wire-level protocols
Exploiting research on automated analysis

Future work: interoperability testing between 
TulaFale and WSE

Would increase confidence in accuracy of our modelling –
some non-critical (?) details are currently missing

MSRC Samoa Project
http://Securing.WS
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Lecture 3: Resources
Projects: Samoa, Proverif

http://Securing.WS
http://www.di.ens.fr/~blanchet/crypto-eng.html



End of 
Lecture 3
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4: Modelling Further Specs
Analyzing WS-Trust and WS-SecureConversation

Interlude: model-based versus source-based formal methods

Generating and Analyzing WS-Policy 



Part I: Analyzing WS-Trust 
and WS-SecureConversation

K. Bhargavan, R. Corin, C. Fournet, A. D. Gordon, Secure 
Sessions for Web Services, submitted for publication (2004)
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Motivation
WS-Security provides basic mechanisms to secure 
SOAP traffic, one message at a time

Signing and encryption keys derived from long-lived 
secrets like passwords or private keys

If a SOAP interaction consists of multiple, related 
messages, WS-Security alone may be inefficient, 
and does not secure session integrity

Standard idea: establish short-lived session key

Recent specs describe this idea at the SOAP-level
WS-SecureConversation defines security contexts, used 
to secure sessions between two parties
WS-Trust defines how security contexts are issued and 
obtained
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A Typical Scenario

Client

STS

Service

1. RST

2. RSTR

3. “Session Exchanges”

SCs
SCT

…

SC

Trust

Secure
Conv

STS = Security Token Server

RST = Request Security Token

RSTR = RST Response

SC = Security Context

SCT = SC Token
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Our Analysis
We develop TulaFale models of some typical 
usages of Trust and SecureConversation

The models attempt to reflect the (partial) WSE 
implementation of these specs

Specs open-ended, so impossible to model completely

We state and prove a series of core security 
properties for these protocols

TulaFale/ProVerif combination of XML syntax and 
automation is very effective
First formal analysis of these specs

Found some limitations, and provided feedback to 
spec writers and WSE team
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System Model
We assume the following participants:

A single certification authority (CA), with keypair kr/sr
Multiple principals, each identified by a username u, and 
equipped with passwords or X.509 certs issued by CA.

We assume a single trusted database (a private channel) 
that relates users to passwords or private keys

Client and server processes acting on behalf of users can 
access this database, but not the attacker

Principal and key compromise:
A principal is safe if none of its secrets has been leaked 
to the attacker; otherwise, unsafe
A security context is safe if it has not been leaked to the 
attacker; otherwise, it is unsafe
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Attacker Model
Our system model allows the attacker:

To send and receive on the soap channel
To generate fresh passwords or certs for any principal
To initiate sessions and to choose parameters of clients 
and servers
To cause the leak of passwords or certificates for any 
principal (but not the CA)
To cause the leak of security contexts

This amounts to a realistic threat model for XML 
rewriting attacks on web services

We did not consider leaks of secrets in Lecture 3

(Additionally, one needs to consider other classes 
of attacks eg SQL injection, etc)
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WS-Trust
C. Kaler, A. Nadalin et al, Web Services Trust 
Language (WS-Trust) Version 1.1 (May 2004)

http://msdn.microsoft.com/ws/2004/04/ws-trust/

“provides a framework for requesting and issuing 
security tokens, and to broker trust relationships”

Deliberatively abstract to allow flexibility, but does 
define a precise syntax for RST/RSTR messages

No specs define syntax for the SC itself, however

For key establishment, two modes:
“Entropic”: client and STS provide randomness for SC key 
“NonEntropic”: only the STS creates the key
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Client STS

begin C1

isRSTEnvelope(…)

end
C1

isRSTREnvelope(…)

begin
C2

end C2

alloc
SC

alloc
SC

Establishing a Security Context

C1 = (partialSC,rstUid,clientEntropy)

C2 = (fullSC,rstUid,rstrUid)
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Security Context After RST

UserToken, StsInfo – either 
UsernameToken or X509Token 
for client and STS respectively

appTo – URI for the service 
mode – either “both” or “server”
extra – additional information eg
liftetime of the context
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Security Context After RSTR

sctid – public id of the SC
sckey – session key

UserToken, StsInfo – either 
UsernameToken or X509Token 
for client and STS respectively

appTo – URI for the service 
mode – either “both” or “server”
extra – additional information eg
liftetime of the context
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WS-Trust Security Results
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WS-SecureConversation
C. Kaler, A. Nadalin et al, Web Services Secure Conversation 
Language (WS-SecureConversation) Version 1.1 (May 2004)

http://msdn.microsoft.com/ws/2004/04/ws-secureconversation/

“defines mechanisms for establishing and sharing security 
contexts, and deriving keys from established security contexts 
(or any shared secret)” so as to secure series of messages

Introduces two new security tokens
Security context token (SCT): refers to an agreed SC
Derived key token (DKT): message-specific derived key
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New Security Tokens

Having established an SC, one can either use it directly, 
or derive from it a key or keys for each message
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SCTs: Two Modes

Either we use it directly... 

...or we derive 
separate signing and 
encryption keys
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Client Service

begin C3
isEnv(…)

end C3

isEnv(…)

begin C4

end C4

get
SC

get
SC

Model 1: Single Exchange

C3 = (SC,Request,RequestMode)

C4 = (C3,Response,ResponseMode)

Correlated with 
message Ids 

and 
<RelatesTo>
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Client Service

begin C3 isEnv(…,  
sessionId, 

msgNumber)

end C3

isEnv(…, 
sessionId, 

msgNumber)

begin C4

end C4

get
SC

get
SC

Model 2: Multiple Exchanges

C4n = (SC,sessionId,
Req0,Resp0,…,Req n,Resp n)

Correlated with 
(sessionId, 

msgNumber)

C3n = (SC,sessionId,

Req0,Resp0,…,Req n-1,Resp n-1,Req n)
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WS-SC Security Results
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Discussion
First formal analysis of WS-Trust and WS-SecureConversation

XML syntax and automation very effective, against a demanding, 
realistic attacker model
Approx 1000 LOC - manual proofs we published at POPL’04 
concerning one or two message protocols would not scale
Still, theorem concerning open-ended sessions proved by 
combination of automated proof and short hand-proof

As is common, these specs:
focus on message formats for interoperability
are non-committal regarding security, for example, no clear spec 
of contents of SCs

By making modes, data, and goals explicit, we found design 
and implementation bugs

see paper for a discussion



Interlude

A useful distinction concerning formal methods
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Model-Based Formal Methods

OK, or
No because…

Implementation Formal Analysis

Compiler
and

runtime actual 
computation

Analyzer eg
model checker or 
theorem prover

Source code Formal model
Kept in 
sync by 
human 
effort

Modelling always abstracts “real world” detail, so may miss some bugs; 
still, effective when studying fixed, difficult algorithms or standards

Much worse, spec-based formal methods do not scale in practice; too 
costly to maintain two documents
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Source-Based Formal Methods

OK, or
No because…

Implementation Formal Analysis

Compiler
and

runtime

Analyzer eg
model checker or 
theorem prover

Formal model

By extracting the model directly from the source code, formal tools 
remain applicable as design evolves

“One document.  One.  It’s the source code.  You learn everything 
there and you know everything there.”

Source code
Automatic 

model 
extractor



Part II: Generating and 
Analyzing WS-Policy

A partially source-based approach to WS-Security

K. Bhargavan, C. Fournet, A. D. Gordon, Verifying Policy-
Based Security for Web Services, to appear at ACM CCS 
(2004)
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Declarative Security Policies
In general, web services export XML-encoded metadata –
WSDL files are the most established

WS-Policy and WS-SecurityPolicy define a declarative XML 
format for programming how web services implementations 
construct and check security headers.

By expressing security checks as XML metadata instead of 
imperative code, policy-based web services conform to the 
general principle of isolating security checks from other 
aspects of message processing, to aid security reviews.

Both sender and receivers have configuration files
A policy is a predicate on a SOAP message
A policy map associates incoming and outgoing 
messages to particular policies (via <To> and <Action>)
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An Example

<Policy Id=“Msg1">
<All>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</>
<Claims><SubjectName>S</></>

<MessageParts>Body()</>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>UsernameToken</>
<Claims><SubjectName>U</></>

<MessageParts>Body() Header("To") 
Header("MessageId“ )</>

Conjunction

Encryption Requirement

Signature Requirement



Demo

Policy-driven security in WSE 2.0

Next: getting policies right is still a problem...



159

Tool 2: Policy Generator/Analyzer

OK, or
No because…

Static 
warnings

WSE 2.0 out of the box

What our tools do

CLR
(IL)

SOAP 
processing

ProVerif
(pi calculus)

TulaFale

code
C#/VB

TulaFale script
S(C(L),L)

predicate
library

Analyzer S(-,-)

In WSE 2.0, WS-SecurityPolicy
files drive security; hence, we 
can generate TulaFale directly 

from implementation files     
(to appear at CCS’04) Generator C(-)

policy config
C(L)

spec L of a
secure link

WSE 2.0
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Translating Policies to Predicates
<Policy Id="Msg1">

<All>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</>
<Claims><SubjectName>S</></>

<MessageParts>Body()</>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>UsernameToken</>
<Claims><SubjectName>U</></>

<MessageParts>Body() Header("To") 
Header("MessageId")</>

predicate hasMsg1Policy(msg1:item,U:item,pwd:string,
S:item,skS:bytes,id1:string,req:item) :-

msg1 =
<Envelope>
<Header>
<To>S</>
<MessageId>id1</>
<Security>
utok
sig1</></>

<Body>b1</></>,
isEncryptedData(b1,req,skS),
isUserTokenKey(utok,U,pwd,skU),
isSignature(sig1,"hmacsha1",skU, 

[<Body>b1</> <To>S</> MessageId>id1</>]).

Conjunction

Encryption Requirement

Signature Requirement
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Analyzing Policy Configurations

U’s pwd
V’s pwd’

cert
key

Regular
Web Service

T
Security
Layer

U’s pwd
cert

Client App

Security
Layer

User U
Premium

Web Service
S

Security
Layer

Web Server

V’s pwd
cert

Client App

Security
Layer

User V

Policy3.xml
Policy4.xml

Policy1.xml Policy2.xml

Automated tools for collecting, parsing policies from IIS Servers, Clients
Config = [Policy1, Policy2, Policy3, Policy4]
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Link Specifications

Link: Security spec for a single web service

Spec = [Link1, Link2]

Link1 = 
{ServiceURI = “http://server/servicePremium”,

ClientPrins = [U],
ServicePrin = S,
SecrecyLevel = Encrypted}

Link2 = 
{ServiceURI = “http://server/serviceRegular”,

ClientPrins = [U, V],
ServicePrin = S, 
SecrecyLevel = Clear}

Links translate to security goals in TulaFale
All requests and responses on Link1 and Link2 must be secure

Web Location 
of Service

Allowed Users

Service Cert 
Subject Name

Request/Response 
Secrecy

Secrecy not required
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Security of Generated Policies



164

Related Work
Going in the opposite direction to our policy analyzer, 
several tools compile formal models to code:

Strand spaces: Perrig, Song, Phan (2001), Lukell et al (2003)
CAPSL: Muller and Millen (2001)
Spi calculus: Lashari (2002), Pozza, Sisto, Durante (2004)
Apparently, the resulting code cannot yet interoperate with other 
implementations – an important future target

Other Dolev-Yao modelling of web services
Model-checking of some example WS-Security specs using FDR, 
uncovering similar attacks: Kleiner & Roscoe (2004)

Other formalizations of XML and web services specs
XPath, XSLT, XQuery: Wadler et al (since 1999)
WS-RM: Johnson, Langworthy, Lamport, Vogt (2004)
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Lecture 4: Summary
These projects demonstrate use of TulaFale

As a model-based FM for analyzing uses ofWS-Trust and 
WS-SecureConversation
As a partially source-based FM for analyzing policy-driven 
WSE installations

The idea of a link spec is related to the declarative attributes
we discussed in Lecture 2: both emphasise the need for 
application-level, not just SOAP-level, views of security

This is current work; we intend to develop both directions
There is much to do...

MSRC Samoa Project
http://Securing.WS



End of 
Lecture 4 


