
Introduction to F#

Scalable, Type-safe, Succinct, Interoperable,

Mathematically-oriented Programming for

.NET

Don Syme
MSR Cambridge

http://research.microsoft.com/fsharp

http://research.microsoft.com/fsharp

Today…

F# overview

Some introductory F# programming

Two case studies

Which functional language:

Connects with all Microsoft and most Open Source foundation
technologies?

Has 100s of Microsoft and open source developers working on
its runtime systems, JIT compilers and libraries?

Has concurrent GC and SMP support?

Has CPU profilers, memory profilers, debuggers, test, doc
tools?

Lets you publish types and code accessible by 100,000s of
developers?

Consists of only ~25K LOC

F# = ML in the world of .NET

Debuggers,

Profilers etc.

VisualStudio,

SharpDevelop

GUI Libraries,

DirectX etc.

System.I/O

System.Net etc.
Sockets etc.

C#

.NET Common

Language

Runtime

Visual Basic

Database

Libraries

F#

Languages are central, but
must interoperate;

A language is judged on its
connectivity;

Introducing F#...

A .NET language

Aims to combine much of Lisp, ML, Scheme and
Haskell in the context of .NET

Functional, math-oriented, scalable

Aimed particularly at the "Symbolic Scripting
and Programming" niche at Microsoft
 e.g. Static Driver Verifier, Terminator, Machine

Learning, Vision and more

F# as a Language

Core

ML

Modules-as-

values, functors

OCaml F#

“OCaml-Objects”

and other extensions

Core

ML

.NET API

Access

Other

extensions

+ tools+ tools

Common core language

Some Simple F#
let data = (1,2,3)

let sqr x = x * x

let f (x,y,z) = (sqr x, sqr y, sqr z)

let sx,sy,sz = f (10,20,30)

printf "hello world"; 1+2

let show (x,y,z) =

Console.WriteLine("hello world");

let sx,sy,sz = f (x,y,z) in

printf “Results = %d,%d,%d“ (sx,sy,sz);

sqrs

let (|>) x f = f x

parentheses
optional on
application

sequencing

local binding, sequencing

NOTE: type inferred

val data: int * int * int

val sqr: int -> int

pipelining operator

pattern
matching

let pastaProducts =

productList

|> Set.filter (fun x -> x.Contains("Ravioli"))

|> Set.union tortelliniProducts

|> Set.to_array

Some Sample F#
Programming

Video...

Orthogonal & Unified Constructs

Functions: unified and simple

(fun x -> x + 1)

let f x y = x * y
let g x y = x + y

let p = (f,g)

predicate = 'a -> bool

send = 'a -> unit

threadStart = unit -> unit

comparer = 'a -> 'a -> int

hasher = 'a -> int

equality = 'a -> 'a -> bool

100s of "delegate" types
in .NET platform

effectively unified away

Effective abstractions

Type parameters

Discriminated unions

Pattern matching

Type inference

Recursion (Mutually-referential objects)

Map<’a,’b>
List<’a>
Set<’a>

type expr =
| Sum of expr * expr
| Prod of expr * expr

….

match expr with
| Sum(a,b) -> ...
| Prod(a,b) -> ... ….

let rec map = ...

Typical F# Project Architecture

Base Tools

 Windows (any edition)

 .NET Framework 2.0

 F# 1.1.11

Readily Accessible Extras

 Visual Studio 2005

 SQL Server 2005

 Alchemi (.NET distribution framework)

 also many, many others

e.g. Visual C++, DirectX,

dnAnalytics, MKL,

LAPACK, MATLAB,

AJAX libraries

etc. etc. etc.

C++ simulation
engine

private
C# matrix

library

Web
Database

SQL
Server Database

Data Access

Simulation

Interactive
Visualization

Scripting

.NET Framework
libraries

F#

MATLAB

File-based
Databases

Analysis

etc. etc. etc.

Case Study: TrueSkill

Live game ranking algorithms in F#

TrueSkill ™

Skill based ranking for Xbox Live! from MSR.

 Skill is a normal distribution
 Mean is the “expected skill”
 Variance is the “uncertainty”

F# as a Scripting Language
Problem:
 Parsing 110 GB of Xbox matchmaking log data (12 days).

 Data spreads over 11,000 text files in over 300 directories.

Task:
 Importing data in structural form into a SQL database.

Code:
 90 lines long!

Development time (code):
 1 – 2 hours.

Performance:
 In under 18 hours = 10,000 log lines processed per second!

F# for Large Scale Data Analysis

Problem:
 Analysis of 4.2 million Xbox user feedbacks (4 months

worth of data).

 Data is already in a SQL database.

Task:
 Adopt TrueSkill™ model to the user feedback problem

for integration into the Xbox service.

Code:
 100 lines long!

Development time (code):
 3 – 4 hours.

Performance:
 10 minutes runtime for the whole dataset!

F# for Complex Scientific
Modelling

Problem:
 Framework for probabilistic inference (research).

Task:
 Extensible and “thin” factor graph library.

Code:
 400 lines long (comparable C# code: ≈2000 lines)

Development time (code):
 2 weeks.

Performance:
 Excellent

Why F#?

Deep .Net Integration.
 System.IO

 System.Data.SqlClient

 Custom TrueSkill™ C# libraries.

 Custom C# Matrix library.

Interactive development.

Full Visual Studio integration.

Built-in type inference.

Anonymous functions.

Pattern matching.

What they say…

New F# user (experienced OO programmer)

"We crunched 400Gb of data, scripting over smaller sets then finally running
3 days with 15 computers. The UI code streams a 100Mb CSV file from
disk in around 5 seconds, while simultaneously calculating and drawing a
histogram."

“The F# code has excellent performance.”

“F# is fun!”

“I really enjoyed the brevity of the resulting code. It
helped me focus on the ends, not the means.”

“The F# code was easy to maintain and evolve”

Performance and related

issues

Benchmark Performance by Language

MS Confidential

F# and OCAML benchmarks

MS Confidential

Running times for benchmarks

MS Confidential

Calling C/C++

C SAT Solver
Accessed from F#

Type-safe F# wrapper

#2: Calling F# from C#

LogWeave (Office XAF Optimization Tool)

4000 lines C#, using Abstract IL libraryUsing types
defined in F#

il.mli/ilbind.mli
type Method
type MethodDef

val bmeth_hash : Method -> int
val bmeth_eq : Method -> Method -> bool
val bmeth_compare : Method -> Method -> int

val mk_bmeth : Type * MethodDef * Types -> Method
val mk_generalized_bmeth : Type * MethodDef -> Method
val generalize_bmeth : Method -> Method

Using functions
defined in F#

#3: Paint.NET & Plugins

Plugin written in F#

Here is the DLL

F# and LINQ

Language Integrated Queries with
F#/LINQ

db.Customers

|> where « fun c -> c.City = "London" »

|> select « fun c -> c.ContactName »

["Thomas Hardy"; "Victoria Ashworth";

"Elizabeth Brown"; "Ann Devon";

"Simon Crowther"; "Hari Kumar"]

SELECT [t0].[ContactName]

FROM [Customers] AS [t0]

WHERE @p0 = [t0].[City]

The Vision: Heterogeneous Execution

Today languages use homogeneous execution:
 The CPU

The natural extension of the LINQ vision is
heterogeneous execution, leveraging
 The database

 The server

 The GPU

 The web browser (ala AJAX)

 Symbolic execution

Write your code in one language, execute it in many
completely different ways

Accelerate ahead with F# Quotations!
let nextGeneration(a) =

let sum = rot a (-1) (-1) .+ rot a (-1) 0 .+ rot a (-1) 1

.+ rot a 0 (-1) .+ rot a 0 1

.+ rot a 1 (-1) .+ rot a 1 0 .+ rot a 1 1 in

(sum .= three) .|| ((sum .= two) .&& a);;

GPU assembly code

Graphics Card

Accelerator.dll

nextGeneration a accelerate <@ nextGeneration @> a

CPU

Metaprogram Program

http://images.google.co.uk/imgres?imgurl=http://www.pc-erfahrung.de/Daten/Bilder/Prozessoren/IntelPentium4_Northwood.jpg&imgrefurl=http://www.pc-erfahrung.de/ProzessormodelleIntelPentium4.html&h=229&w=400&sz=18&tbnid=0WzTpKfOEH22eM:&tbnh=68&tbnw=120&hl=en&start=1&prev=/images?q=intel+pentium+4&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.pc-erfahrung.de/Daten/Bilder/Prozessoren/IntelPentium4_Northwood.jpg&imgrefurl=http://www.pc-erfahrung.de/ProzessormodelleIntelPentium4.html&h=229&w=400&sz=18&tbnid=0WzTpKfOEH22eM:&tbnh=68&tbnw=120&hl=en&start=1&prev=/images?q=intel+pentium+4&svnum=10&hl=en&lr=

Case Study: SPiM

Interactive Chemical/Biological

Stochastic Simulation with F#

#3: SPiM: Biological Simulation and
Visualization

http://www.luca.demon.co.uk/BioComputing.htm
http://www.luca.demon.co.uk/BioComputing.htm

Summary

Challenges of modern language design

Statically typed, hence
Scalable (> 100K LOC)

InteractiveInteroperable

Safe

Libraries

Good
Platform

Efficient

Succinct

It’s the
combination
that counts

Summary

.NET 2.0 + F# 1.1

 An excellent combination for practical scientific
programming

 .NET gives you a rich software eco-system of relevant,
polished components

 F# gives you scripting, performance and the beauty
and productivity of functional programming

Enjoy!

Questions?

