
Unstructured P2P networks by example: Gnutella 0.4,
Gnutella 0.6

Author Sebastian Ertel

Current topics in dependable distributed systems
Systems Engineering Group

Dresden University of Technology

Abstract

Owing to the growing popularity of peer-to-
peer networks, this paper tries to give a little
overview about one of the most popular proto-
cols used in such dynamic environments, the
Gnutella protocol. After a short introduction
to the protocol internals, the main focus lies
on showing the evolution of Gnutella from a
decentralized to a hybrid peer-to-peer network
protocol thereby focussing the attention on
the properties scalability, reliability and flexi-
bility.

1 Introduction

In the year 1999 the first and still widely known file
sharing system napster appeared at the market. Nap-
sters’ main focus was on the distribution of multimedia
files such as *.mp3 or *.wmv. In the following 2 years
it gained a lot of new users all over the world and
reached its peak at February 2001 with 26.4 million
users worldwide. In the same year the music industry
raised victoriously in an injunction at the Nineth Cir-
cuit Court forcing napster to shut down the whole net-
work and paying $26 million settlement for the past.
In the case of napster it was quite easy to switch off the
whole network, since it was a centralized peer-to-peer
network building on top of TCP/IP at the applica-
tion level. Like in every P2P network the resources
were distributed among the peers of the network. In
order for one peer to be able to download data from
some other peer, every node in the network played the
role of a server as well as a client making the network
highly flexible, dynamic and available. Those network
participants are, because of their multiple personality,
also refered to as servents. Although the file sharing
was performed directly between two peers, lists about
the participating systems and their provided files were
kept among centralized servers. So the only thing to
do to shutdown the whole napster network was pluging
off one of the central servers, which finally happened in
July 2001 marking the end of napsters’ success story.

In 2000 when the first lawsuit against napster was is-
sued by the band Metallica another peer-to-peer net-
work protocol was introduced, Gnutella version 0.4. In
contrast to the protocol used by napster, Gnutella was
a file sharing protocol for decentralized P2P networks
removing the single point of failure of centralized main-
tenance servers. The concept was to design a highly
available network which contributes to the major de-
sign goals of peer-to-peer file sharing systems: flexibil-
ity, scalability, reliability and anonymity. This paper
investigates the approaches of the Gnutella protocol
in fullfilling these goals. After a short intoduction into
the protocol version 0.4, a look at several case studies
will give an insight into the overall behaviour of the
network revealing several issues. In section 4 a quite
different approach encountering the major problems
of version 0.4 is depicted whose main concept can be
found in the hybrid P2P structure of successor version
0.6. After checking upon the reliability by investigat-
ing several attacks against the network, section 6 will
present some of the new features of the Gnutella ver-
sion 0.6 protocol. A final discussion and summary will
conclude this paper.

2 The Protocol

Once a Gnutella servent has obtained an IP address of
another servent, either cached or determined with the
help of a Gnutella Host Cache Server, he establishs a
TCP/IP connection, the Gnutella network situated at
the application level builds upon. Sending a message
of the form

GNUTELLA CONNECT/<protocol version string>
\n\n

signals the remote servent the wish to join the Gnutella
network. If the servent is willing to accept the connec-
tion the response message looks like

GNUTELLA OK\n\n

There are a couple of reasons why the remote servent
could also refuse the connection establishment. One

Figure 1: Gnutella Protocol version 0.4

is for instance too heavy load at the node or maybe
he does not support the protocol version of the calling
servent. In fact any other message than the above
sent to the client indicates the failing. An overview
of the internals of the protocol, that are subject to
the following subchapters, was published in [7] and is
shown in figure 1.

2.1 Descriptor headers

Once the connection has been established successfully
every communication between the servents is done via
so called Gnutella protocol descriptors.

For routing purposes each desciptor header consists
of the following fields:

• Descriptor ID - the identifier of the sender (must
not be the IP address because of anonymity), es-
pecially needed for routing the response messages

• Payload Descriptor - identifying the message type

• TTL - Time To Live field, indicating the max-
imum number of forwards until this message is
removed from the network. Therefor it is decre-
mented by every servent it passes until it reaches
null.

• Hops - number of nodes passed; incremented by
every servent passed

• Payload Length - length of this messages’ descrip-
tor immediately following. This is a very impor-
tant field since it marks also the beginning of the
next message in the input stream of a servent!

At this point two fields are mentioned again as they
address special issues. As indicated before, the only
way of avoiding a network flooding and the resulting
poor bandwith is to trust every servent in computing
the TTL field correctly. The other field is the payload
length. Since Gnutella builds its network structure on

the user level, it does not know anything about pack-
ets. So servent synchronization of the input stream
has to be managed using the value of this field in a
very strict way.

2.2 Message types

Following the desciptor header is the actual message.
In the Gnutella Protocol v0.4 there exist mainly 5 mes-
sage types that can be further classified according to
their purpose.

• Finding friends: A servent can start a search for
other servents throughout the Gnutella network
by sending a simple PING message. Every ser-
vent who receives such a message might respond
to it with one or more PONG messages includ-
ing not only an IP address and port, but also the
number of files and kilobytes to be shared.

• Resource retrieval: To search the network for a
certain data, a QUERY message is used includ-
ing a value representing the minimal speed a re-
sponding servent should offer and the search crite-
ria, to be queried for, itself. Servents that receive
such a message and possess data, e.g. files, meet-
ing strictly the specified search criteria, should
respond to it with a QUERY HIT message. Ad-
ditionally to the network address information and
the number of hits, also a result set of file identi-
fiers consisting of index, size and name is embed-
ded in the payload part of this message.

• Pushing data: PUSH messages have a certain
purpose in case of firewalled servents and will
therefor be described in more detail in the fol-
lowing section.

Every actual data transmission between two ser-
vents is performed outside of the Gnutella network via
a direct TCP/IP connection over HTTP using the pa-
rameters obtained by the former QUERY request.

GET /get/<File Index>/<File Name>/ HTTP/1.0/
\r\n
Connection: Keep-Alive\r\n
Range: bytes=0-\r\n
User-Agent: Gnutella\r\n

Using the range field in the HTTP request makes it
also possible to reestablish an aborted transmission at
the point where it has been interrupted.

2.3 Firewalls

A problem occurs when the servent, sharing a
ressource, is situated behind a firewall that blocks in-
coming connections to its Gnutella port. For those
situations Gnutella provides an opportunity for the
requesting client to force its desired communication
partner to ”push” the data to its machine. This is
accomplished by sending a PUSH message, indicating
that he needs to be the initiator of the TCP/IP connec-
tion. On receipt of such a message the servent should
try to a establish a connection to the requesting node,
identified by the IP address and port included in the
PUSH. A failure implies, the node requesting the file
is also behind a firewall. In such a case a connection
in the context of the Gnutella Protocol Specifiction is
not possible. On success the preceeding conversation
works almost like normal via HTTP.

2.4 Routing

PING and QUERY messages are broadcast messages
that are flooded to every node in the network except
the sender until their TTL field expires. Every result-
ing PONG/QUERY HIT message is supposed to have
the same Descriptor Id in the Descriptor header as the
corresponding PING/QUERY message it responds to.
In the case where a servent receives a PONG without
having seen a PING, it will remove the message from
the network by not forwarding it to any other servent.
In contrast to PONG or QUERY HIT messages, Push
messages are routed by the Servent Identifier field and
not by the Descriptor Id included in the header. Like
described before it is crucial to the flow control of the
network that every servent increments the Hops field
and decrements the TTL field of a descriptor header
appropriately. One important fact, to keep in mind, is
that PONG and QueryHit messages are routed at the
same path like the incoming PING and Query mes-
sages. This will, as shown in one of the next sections,
contributed to a very serious security issue.

3 Studying the Gnutella network

To spy the Gnutella network a servent joins the net-
work and gathers information by using the protocol
without violating its means. Those network partic-
ipants are often also refered to as network crawlers.
With the help of such techniques typical subjects of in-
terest, like the caused traffic, the distribution of data,

the network structure as well as the behaviour of the
network itself, could be studied in the passed couple
of years.

3.1 Gnutella traffic

In [3] one of the main reasons for the deficit in scal-
ability of version 0.4 had been discovered. As a con-
sequence of the, until then, very naiv approach con-
cerning the connection maintenance, nearly 55% of the
generated traffic was caused by PING/PONG message
and only 35% was user generated as shown in figure 2
taken out of [8].

Figure 2: Gnutella network traffic in protocol version
0.4

Furthermore it turned out that most of the queries
did not result in a positive response of the servents,
leading to nothing else but traffic overhead(see figure
3 observed in [8]). Responsible for that could have
been again the very inflexible protocol definition which
says: [”A servent should only reply to a Query with
a QueryHit if it contains data that strictly meets the
Query Search Criteria.”] [1]

Figure 3: Queries with QueryHit message compared
to all queries

Figure 4, published in [8], contributes to that as-
sumption by showing the number of Hits sent as an
reply to a successful query message.

Figure 4: Number of responding QueryHits belonging
to one Query message

Those difficulties vanished when the new version of
the protocol was introduced in the middle of 2001.
The result: almost 92% QUERY messages and only
8% protocol generated traffic led to a big increase of
the Gnutella user community.

3.2 Network structure

Since the TTL values can be set by the user in sev-
eral applications figure 5, that was also published in
[8], gives an indication of how far the search of the
individual messages expands.

Figure 5: Hop count of all packets

Surprisingly most of the packets had an TTL of
15 or less, but it had also been observed that there
were some servents trying to receive a brighter amount
of peers by increasing the value around 20 (figure 6;
appeared in [8]).

Figure 6: TTL values of all packets

It had also been observed that the shared data is not
evenly distributed. It turned out that a big amount
of the data as well as the connectivity was situated
among just a small group of peers which of cause put
a hit according to the reliability of the network. So
71% of the files shared were provided by 10% of the
nodes. The authors of [3] made ”free riders”, servents
that do not share data, responsible for this. Towards
version 0.6 several improvements were introduced to
encounter that issue, including a default sharing direc-
tory and the dropping of all HTTP messages having
a different application entry in its User Agent field.
According to that, there has been a major shift to
nodes using Gnutella protocol version 0.6 . Addition-
ally it seems more likely that session last longer when
the size of the network is rather small. This accounts
to the fact of increased operability of the individual
hosts, which now spend much less time on changing
their connections as before. Concerning the change
of the structure according to the daytime, it is quite
intuitive that the network is very busy in the evening
hours with the people returning home from work as de-
picted in figure 7 from [3]. The same behaviour could
be observed for certain weekdays. So the most nodes,
joining the network, were registered on the weekend.

4 The Query/Advertise approach

Before several enhancements of version 0.6 are dis-
cussed in one of the following sections, one completely
different approach in improving some of the network’s
properties shall be mentioned. The idea of [4] is to use
a publish/subscribe middleware to encounter the exist-
ing Gnutella problems. A publish/subscribe network
consists of subscribers, which are nodes interested in
certain kinds of events, and publishers, that in turn
distribute events asynchronously to the nodes. For
a client to be informed of a certain event, he has to
subscribe itself to one or more subscribers defining ex-
actly which type of event he is interested in. Therefor
the most important requirement is a highly structured

Figure 7: Network structure over the day

content with respect to the subscribe message. This
is achieved by the creation of so called filter patterns,
that typically consist of attribute-value pairs and may
have the following structure:

{(director, "Michael Mann")(title, "Heat")
(Special Edition, True)}

As seen in the example, the type of a value can be in-
teger, double, string or date. The final routing is done
by an underlying content based algorithm, operat-
ing via some peer-to-peer-interconnected server nodes.
This algorithm is responsible for routing messages to
the clients whose subscription exactly matches the ap-
peared event.

4.1 Flaws of the Gnutella network

Before proceeding it is necessary to identify some of
the flaws of the Gnutella network with respect to the
defined design goals anounced above, excluding secu-
rity issues since those are subject of the next section.
One of the largest goals to be achieved in a peer-to-
peer network according to the user is surely anonymity.
In the Gnutella protocol this is accomplished by using
the servent identifier field in the description header for
routing purposes, but it is absolutely not hard to track
the IP of one servent by just using simple network
sniffing tools. Another main point of attack is a mali-
cious user. Since every servent routes packets of other
network participants it is very easy for an attacker to
harm the core of network. The following section will
delve into such an attack in more detail. As it was
explained in the section about the network charater-
istica, especially for users of version 0.4 efficiency in
terms of network traffic is still a big problem. Those
nodes may easily become a serious bottleneck in the
network. The lack of standardization concerning the
query strings in the protocol specification additionally
causes issues, hence every node is priviledged to inter-
pret them without any limitations. This may cause a

lot of misunderstandings between the peers and leads
to additional message overhead.

4.2 Using Publish/Subscribe services

The proposed query/advertise system as introduced
in [4] consists of three global concepts: advertisments,
queries and responses on top of a middleware pub-
lish/subscribe architecture. Advertisments are used
by the clients to tell the servers what kind of resource
they are willing to share by using filter patterns. Those
are send to a server where they are forwarded among
several other servers in the network. If a client is now
looking for a resource he injects a message into the
Q/A system describing exactly what he is looking for.
What he receives in return are Responses of every ad-
vertiser with a match, including detailed information
about the resource.

4.3 ... in the end

It is obvious that there are a couple of advantages
to this approach antagonizing the flaws described. In
terms of anonymity there is a great benefit, since the
complete routing is done by the servers. So it is not
necessary for the clients to have any information fur-
ther about other peers in the network than the ones
requested by a query. In fact the only participant who
gets to know the real identity of a client is the server
that recieves the advertisment. Every forwarding is
done by a set of characteristics of the client that in
reverse do not reveal its identity. When it comes to
efficiency, this approach is very hard to beat thanks
to the removal of the network flooding caused by the
Query messages. Every server knows exactly where
to route the queries according to the forwarded adver-
tisments he received from the other servers. Another
adavantage in the security issue of malicious users is
the contamination of those on the first communication
level between the client and the server. The standard-
ization of the query messages by the underlying Pub-
lish/Subscribe system avoids misunderstandings be-
tween the peers and therewith reduces the traffic over-
head in the network significantly. But nevertheless
there are some major aspects that will prevent this
approach from replacing the old fashioned approach
from Gnutella. The weightiest reason for that lies in
the network structure. It violates the Gnutella idea of
a peer-to-peer network where every node act in a client
as well as in a server role. This makes the Gnutella net-
work so extremely flexible. In the Q/A system the pro-
grams running on the client machines differ from those
on the servers. Additionally the resource retrieval is
also a problem of the descibed design, since exchang-
ing IP addresses would decrease the anonymity goal.
Otherwise sending it via the Query/Advertise network
would fail the efficiency property. A solution proposed
by the author is to use a third party to manage the
resource exchange. But what if the advertise servers,

which are the only ones worth considering, are more
than 1 hop away from each other? One last disad-
vantage to be mentioned here is the caching. As no
client is involved in the routing algorithm the caching
of very frequently requested files is not quite easy to
accomplish and includes major changes in the design.
There are some other further research issues labeled in
[4] which also contribute to the fact that this approach
remains rather theoretical than practical.

5 Attacking the network

In the former section it was stated that the Gnutella
network is lacking of some serious security issues con-
cerning not only the anonymity of the peers but also
the vunerability of individuals. The major reason for
that lies in the Trust Model of Gnutella which bases on
the hope of well-behaving users rather than on mecha-
nisms to prevent attacks. This chapter will give proof
to that argument by describing two attacks and their
effects in more detail.

5.1 The QueryHit attack

Figure 8: A Distributed Denial of Service attack ex-
ploiting the QueryHit messages in Gnutella protocol
version 0.4

The most effective Distributed Denial of Service at-
tack, with the view of an attacker, is the so called
QueryHit attack where, as the name indicates, a secu-
rity leak in the QueryHit messages is exploited. The
principle is rather simple and works just as email spam.
So a peer might ”lie” according to an incoming Query.
This is possible because the Gnutella Protocol does not
set any limit on the information included in an Query-
Hit message thereby making several Caching strategies
applicable. The attacker, that wants to run a DDoS
attack against a globally known webserver like for in-
stance cnn.com, might use this loophole by replying
with the address of this server and a file that is very
likely to be found there, for example ”index.html”,
thereby making every poluted peer an active part in

this attack. Figure 8 taken from [7] shows how this at-
tack works. As explained a peer might send a request
for any resource (step 1). This Query is forwarded by
other peers in the network until it reaches the attacker
which answers with a QueryHit including the IP of the
victim (step 2). Mind that this does not have to be a
participant of the Gnutella network since the HTTP
request issued in step 3 by the nodes aiming to down-
load the ressource is performed outside of the network.
In the following there are a couple of tricks to make this
attack even more efficient. To make the resource of the
attacker as attractive to the servents as possible by for
example offering a fast LAN connection and naming
the resource as similar to a Query as possible as well
as having it end with a very popular suffix like ”.mp3”
or ”.avi” is self-evident. This will result in a very high
ranking among the Gnutella clients such as BearShare
or LimeWire. An additional way in poluting as many
peers as possible is to connect to a Gnutella IP Host
Cache server and retrieve a random number of peers.
After providing them with spammed QueryHit mes-
sages, the attacker could just repeat this procedure by
reconnecting again to the Host Cache server using an
other random number (figure 9 appeared in [7]). An
important fact, contributing to this attack, is that a
peer that could not succeed in downloading the de-
sired resource will retry automatically after a certain
timeout which even increases the load on the attacked
server. A quite interesting fact is that this kind of
DDoS attack is very often used for commercial pur-
poses also, by just leading to a certain website. As
a result of the experiment described in [7] not only
the attacked Apache Webserver but also the shielding
Zonealarm firewall collapsed under the high load. As
for traceability, since Gnutella does not possess any
auditing system it is impossible to find out who was
the originator of the attack. Even more concerning
is the fact that it is theoretically not possible to stop
such an attack because of the nature of the network
itself. To prevent such Distributed Denial of Service
attacks, the authors of [7] suggest a very simple as well
as efficient solution using an additional handshake se-
quence between the server and the client before the
final TCP/IP connection, for downloading the file, is
established.

5.2 The Pong attack

A second kind of DDoS attack, that operates in a quite
similar way as the former introduced, is the Pong at-
tack. Instead of QueryHit, Pong messages are used
to route the traffic to a peer that is the traget of an
attack. This is achieved by responding to a PING mes-
sage with an IP and portnumber of another peer (step
1 and 2 of figure 10; published in [7]). As a result the
poluted peer (p1) will route all its Query traffic to the
attacked system (step 3). For fairness sake one has
to mention that this attack is not even close as dan-

Figure 9: Maximizing the number of spammed peers
by using a Gnutella host cache server

gerous as the QueryHit attack because every servent
in the Gnutella network reissues PING messages peri-
odically after a certain time interval to discover new
peers and eliminate the old ones out of its cache. So
this attack will terminate after the spammed peer has
send his next PING broadcast and because A is not
part of the Gnutella network it will be removed out of
the cache of p1.

Figure 10: A Distributed Denial of Service attack ex-
ploiting the Ping messages in Gnutella protocol version
0.4

5.3 Going even one step further

As it has been noted in one of the previous sections,
anonymity is a serious issue of the Gnutella protocol
since it is very easy to discover the IP addresses of the
peers. This makes it much easier for an attacker than
dealing with highly secured Internet systems that may
even use dial-up connections or DHCP to receive their
IPs. As a consequence especially hosts with a static
IP are very vulnerable, for example users of the ”.edu”
domain. Another minor weakness of the Gnutella pro-
tocol is the PUSH message and the possibility of us-
ing it to inject a virus into the system. This can be

achieved by just lying to any arriving Query message
by pointing to a file that does not exist. Since upon re-
ceive of a PUSH the requesting peer tries to establish a
connection with it accepting any file send, a virus can
be intruded. It has to be mentioned that this is not as
easy as it sounds, because some Gnutella clients like
LimeWire actually do a filtering of potentially dan-
gerous file types like ”.exe” or ”.vbs”. To summarize
this section, Gnutella offers a lot of possiblities for at-
tacking the whole network system not only restricted
to the Gnutella network itself. So a user should at
least be aware of these security leaks when entering
the Gnutella network and maybe take some precau-
tions that help to minimize the success of attacks such
as reconnecting from time to time.

6 Extensions of Version 0.6

Like shown in the former chapters the Gnutella pro-
tocol version 0.4 had a lot of issues making it hard to
scale. Indeed there exists a mathematical proof in [6]
concluding that Gnutella can’t scale. This paper was
published in February 2001. In the middle of 2001 a
new version of the Gnutella protocol appeared on the
market introducing major extensions while the main
focus was on increasing the efficiency of the network
and therewith also the availability. In the following I
will cover only the most important ones. For further
knowledge please have a look at [2].

6.1 Protocol extensions

The version 0.6 protocol itself possess two improve-
ments with markable impact on both, the structure as
well as the traffic of the network. Both of them mak-
ing the network more dependend on the capabibilities
of the individual peers.

6.1.1 Connection initialization

Protocol version 0.4 introduced a very simple ap-
proach in connection establishment. Neither could the
peer, entering the Gnutella network, choose whether it
wants to be connected to this certain node nor does the
peer, to be connected to, knew anything about the new
clients abilities. The final decision about a successful
connection setup always resided with the peer the new
servent elected as entrance into the network. To avoid
this kind of unfairness a handshaking sequence is ini-
tiated after establishing a TCP/IP connection. A new
peer with the intension to enter the Gnutella network
sends a header containing not only the connection re-
quest but also additional information about its capa-
bilities.

GNUTELLA CONNECT/0.6
User-Agent: BearShare/1.0
Pong-Caching: 0.1
GGEP: 0.5

On receive of such a message the remote servent can
base its decision whether to support this request or
not. If he does a positive reply is sent to the new
servent including additional charaterizing information
of the server.

GNUTELLA/0.6 200 OK
User-Agent: BearShare/1.0
Pong-Caching: 0.1
GGEP: 0.5
Private-Data: 5ef89a

So, for example, the client might only want to connect
to peers using BearShare applications. Thus in the
running example he successfully finishes the handshake
sequence and establishes the final connection.

GNUTELLA/0.6 200 OK
Private-Data: a04fce

According to the specification it is strictly recom-
mended to use standard HTTP headers. The usage
of own headers is also possible but they have to con-
firm the syntax of HTTP.

6.1.2 X-Try headers

In the former protocol version a rejection of a con-
nection setup was performed by any response different
from the above shown. The refused client than had
to look for other peers in the network willing to open
a connection with him. In version 0.6 the strategy of
X-Try headers is introduced. So in case, for whatever
reason, a servent may reject the connection to an en-
tering host it must, as possible, supply him with other
information of other peers in the network that may be
willing to accept his request. Therefore a so called X-
Try header is that consists of a list of IP host addresses
and appendant port number.

X-Try: 1.2.3.4:1234, 5.6.7.8:5678

This reduces not only the effort of a client to find a
communication partner but also the message overhead
in the network. Another new technique contributing
to this goal and also added to this new specification is
the caching of Pong messages among the peers.

6.2 Restructuring the network

Those optimizations to the protocol itself involved sev-
eral changes to the structure of the network. The main
benefit out of it was scalability.

6.2.1 The ultrapeer system

As it is described in the case study section, the net-
work structure evolved in terms of a so called power
law, meaning the existence of just a couple of pow-
erful peers with a high amount of network data and
connectivity. The idea, the new approach is based

upon, can be seen as direct result of these meas-
surements. It kind of adapts the concept of the ex-
plained Query/Advertise architecture to the needs of
a peer-to-peer network. So the Ultrapeer system devel-
oped for specification 0.6 builds a hierarchical network
structure with Ultrapeers and Leaves. The latter ones
only have connections to Ultrapeer nodes while those
on the other hand act as a kind of proxy. An ultrapeer
is connected to further ultrapeers and only forwards a
query to a leaf if it ”thinks” the leaf node is able to
generate a query hit. For a servent to become ultra-
peer capable some requirements like the property of
free internet access (not firewalled), a suitable oper-
ating system, sufficient bandwith, uptime, RAM and
CPU speed have to be fullfilled. Whether he becomes
one or not is decided by the network itself and accord-
ing to the need of another ultrapeer. This is negotiated
in the ultrapeer handshaking sequence. A normal con-
nection setup starts with a message of the peer saying
that it wants to join the network as a leaf.

GNUTELLA CONNECT/0.6
User-Agent: LimWire/1.0
X-Ultrapeer: False
X-Query-Routing: 0.1

The requested ultrapeer may respond with a positive
answer.

GNUTELLA/0.6 200 OK
User-Agent: LimWire/1.0
X-Ultrapeer: False
X-Ultrapeer-Needed: False
X-Query-Routing: 0.1
X-Try: 24.37.144:6346, 193.205.63.22:6346
X-Try-Ultrapeers: 23.35.1.7:6346,
18.207.63.25:6347

1 The field X-Ultrapeer-Needed is used to make the
above explained decision in case a new ultrapeer ca-
pable node enters the network. Included in the reply
are also references to other ultrapeers since the final
decision still resides on the client side. In the running
example the client becomes a new shielded leaf of the
ultrapeer by just sending an HTTP OK message.

GNUTELLA/0.6 200 OK

To also provide backward compatibility, a peer, inca-
pable of supporting the ultrapeer system, just behaves
to the guidelines of the former specification. Examples
for other szenarios are listed in [2]

6.2.2 Query routing protocol

The query forwarding inside the ultrapeers is taken
care of by the new Query Routing Protocol. As noted

1This is an example taken out of [2] that, in my opinion
includes two mistakes. At first the value in the X-Ultrapeer
field of the ultrapeer response should be ”True”. Second the
first IP address given in the X-Try field is lacking of a further ...

in the specification [”The aim of the QRP is to avoid
forwarding a query that cannot match, it is not to for-
ward only those queries that will match.”][2] In doing
so every ultrapeer receives a hash table from its leaf
nodes with all the query words potentially supported.
So on a receive of a query the ultrapeer can process
the routing without having any look at the actual re-
source by breaking the query into indivdual words and
just sneaking throw this big query routing table. For
the preparation of the hashed information every leaf
node breaks its resource names into indivdual words.
It also does elemination of plurals by just tailoring
the last two or three letters. After that the ASCII
words are hashed and the present flag is set. Finally
after applying an optional compression step the data
is split into small pieces and shipped with the regular
Gnutella messages to the ultrapeers. Please mind that
those arrays can become very so only the hash and a
flag are written into the table and not the word itself.

6.3 Further extensions

Another feature of version 0.6 is HUGE which provides
hash functions needed for building up the query rout-
ing tables. Additionally HUGE extends the file down-
load between the peers to make remote peers aware of
location changes of files, for example. The new proto-
col specification even consists of a pong caching scheme
to reduce the traffic in exploring the network.

7 Summary

This report shows the evolution of the Gnutella pro-
tocol design from an unstructured to a structured
peer-to-peer network. Gnutella was able to handle
the dynamic nature of P2P environments in a scal-
able manner. The efficiency of the discovery of data
among the network was improved further in the ver-
sion 0.6. Nevertheless there are two important aspects
that Gnutella did not accomplished very well. The
first is the content distribution over the network. As
explained in chapter 3 the content as well as the traffic
is concentrated at a few nodes with very special qual-
ities. The second point where the Gnutella protocol
fails is in providing a concrete answer to a search re-
quest. Because of the flooding that is limited by the
TTL values of the messages, the Gnutella network re-
sponds with 0 results in case no QueryHit message to a
corresponding Query has been received. In the context
of the network this does not mean that the resource is
not available at a node. It rather says that the resource
did not exist among the queried peers until the TTL
expired. These two aspects of content distribution and
search are definitely something that a designer of such
a protocol would like to have control of in order to
make it as efficient as possible. A solution is provided
by the Distributed Hash Function of the centralized
peer-to-peer approach that marks the next generation
of P2P networks.

References

[1] The Gnutella Protocol Specification v0.4 Docu-
ment Revision 1.2.

[2] Gnutella Protocol Specification v0.6.

[3] Matei Ripeanu. Peer-to-Peer Architecture Case
Study: Gnutella Network.

[4] Dennis Heimbigner. Adapting Publish/Subscribe
Middleware to Achieve Gnutella-like Functional-
ity.

[5] David G. Deschenes, Scott D. Weber and Brian
D. Davison. Crawling Gnutella: Lessons Learned.
figures: 7

[6] Jordan Ritter ”Why Gnutella can’t scale. No, re-
ally.” February 2001.

[7] Demetrios Zeinalipour-Yazti ”Exploiting the Se-
curity Weaknesses of the Gnutella Protocol”. fig-
ures: 1, 8, 9, 10

[8] Kelsey Anderson ”Analysis of the Traffic on the
Gnutella Network” March 2001. figures: 2, 3, 4,
5, 6

